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Abstract
Multiproduct manufacturing facilities running on a campaign basis are increasingly 

becoming the norm for biopharmaceuticals, owing to high risks of clinical failure, 

regulatory pressures and the increasing number of therapeutics in clinical evaluation. 

The need for such flexible plants and cost-effective manufacture pose significant 

challenges for planning and scheduling, which are compounded by long production 

lead times, intermediate product stability issues and the high cost -  low volume 

nature of biopharmaceutical manufacture. Scheduling and planning decisions are 

often made in the presence of variable product titres, campaign durations, 

contamination rates and product demands. Hence this thesis applies mathematical 

programming techniques to the planning of biopharmaceutical manufacture in order 

to identify more optimal production plans under different manufacturing scenarios. A 

deterministic mixed integer linear programming (MILP) medium term planning 

model which explicitly accounts for upstream and downstream processing is 

presented. A multiscenario MILP model for the medium term planning of 

biopharmaceutical manufacture under uncertainty is presented and solved using an 

iterative solution procedure. An alternative stochastic formulation for the medium 

term planning of biomanufacture under uncertainty based on the principles of chance 

constrained programming is also presented. To help manage the risks of long term 

capacity planning in the biopharmaceutical industry, a goal programming extension 

is presented which accounts for multiple objectives including cost, risk and customer 

service level satisfaction. The model is applied to long term capacity analysis of a 

mix of contractors and owned biopharmaceutical manufacturing facilities. In the final 

sections of this thesis an example of a commercial application of this work is 

presented, followed by a discussion on related validation issues in the 

biopharmaceutical industry.

The work in this thesis highlighted the benefits of applying mathematical 

programming techniques for production planning of biopharmaceutical 

manufacturing facilities, so as to enhance the biopharmaceutical industry’s strategic 

and operational decision-making towards achieving more cost-effective manufacture.
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Chapter 1

Introduction

1.1. Biopharmaceutical Development

The discovery of recombinant DNA and monoclonal antibody technologies in the 

1970s marked the birth of the biopharmaceutical industry. Biopharmaceuticals 

include protein hormones, engineered protein-based vaccines, and monoclonal 

antibodies. They have proven highly successful in modifying patient physiology 

often with greater success and fewer side effects than traditional small-molecule 

drugs or vaccines; in fact Walsh reports that since 2000, over a quarter of all new 

drugs approved have been biopharmaceuticals (Walsh, 2003). However they are fast 

becoming victims of their own success. As the industry matures companies continue 

to face a long and costly product development lifecycle, with an average time-to- 

market of 7-8 years (Foo et al. 2001), high risks of clinical failure, regulatory 

pressures and the inherent complexities of biopharmaceutical manufacture all present 

real challenges for companies wishing to remain competitive by achieving more cost- 

effective biomanufacturing. This need to reduce costs and make better use of 

resources provides the impetus for the development of decision support tools (DST) 

for the biopharmaceutical industry and the motivation for this EngD.



Chapter 1. Introduction

1.2. Biopharmaceutical Manufacture

Biopharmaceutical manufacture or “biomanufacturing” refers to the process of 

producing a biologic or biopharmaceutical, and is generally taken to be the process 

which ensues subsequent to the stages of research and process development (Sofer & 

Hagel, 1997). A typical biomanufacturing process is likely to be comprised of a 

number of steps, typically cell culture/fermentation, cell harvesting, recovery, 

purification and formulation through to a product with regulatory approval. Each step 

comprises a number of unit operations, surrounded by a number of ancillary but vital 

processes such as cleaning, sterilisation, media/buffer preparation and quality control 

and quality assurance steps.

Bioprocessing is characterised by a number of manufacturing challenges shared with 

the traditional chemical batch processing industries, where typically the major 

operational challenges are the need to speed up process/product development, 

increase productivity, and satisfy safety and product quality requirements (Allgor et 

a l , 1996). However there are additional challenges in the biopharmaceutical 

industry, such as higher variations in process behaviour due to the biological nature 

of the materials used, more stringent quality control regulations and higher end- 

product purity requirements (due to the sensitive therapeutic nature of many of the 

products). Other challenges in bioprocessing include the ongoing improvement of 

fermentation titres and downstream purification yields, management of utilities 

which are often shared between different process equipment and a general need for 

ongoing process optimisation.

Much of biopharmaceutical production has traditionally been undertaken in 

dedicated facilities due to the stringent regulatory constraints associated with 

biopharmaceutical manufacture which stems from the need to avoid product cross­

contamination. However, in the 1990’s this started to change as smaller companies, 

unable to cope with the capital outlay associated with building their own facilities, 

were driven to use the services of contract manufacturers (Sofer, 1995). This gave 

rise to the now widespread use of multiuse, multiproduct facilities. The trend was 

accelerated in 1998 when the Food and Drug Administration (FDA) started to allow 

companies to manufacture different products in the same building, with some shared

- 14-



Chapter 1. Introduction

facilities, since this was found to result in increased efficiency and facility utilisation 

(Chemical Market Reporter, 1998). The high risks associated with drug development 

coupled with increasing demands for certain therapeutics has meant that an increased 

use of the more flexible and cost-effective multiproduct contract manufacturing 

facilities, and in 2004 Langer reported that 35% of all biomanufacturers outsourced 

at least some of their production, expecting that by 2008 nearly half would do this 

(Langer, 2004). Given the flexibility offered by multiproduct facilities, contract 

manufacturers are not alone as the majority of biomanufacturing companies are 

employing multiproduct facilities. Multiproduct facilities pose a significant cleaning 

validation challenge. Products are typically run one at a time on a campaign basis, 

this poses a serious risk of cross-contamination if the necessary precautions are not 

taken or detection methods are not sufficiently sensitive and validated. Furthermore, 

equipment may be disposable, dedicated or shared. Each presents different 

advantages and disadvantages, in terms of cost effectiveness and risks of 

contamination, and frequency of maintenance and cleaning. At a higher level, 

biomanufacturers need to think about capacity availability for products which may or 

may not be successful. Challenges are particularly great in larger companies which 

may have a very large portfolio of drugs going through their development pipeline at 

any one point in addition to their existing marketed drugs. Manufacturers have to 

decide whether to build or buy capacity, which is a particularly sensitive financial 

decision given the associated costs and risks such as potential loss of market.

1.3. Planning and Scheduling of Biopharmaceutical 

Manufacture

As was discussed in Section 1.2, the biopharmaceutical industry is increasingly 

employing multiproduct manufacturing facilities. Challenges include the significant 

burden of cleaning validation and the risk of cross contamination. Other challenges 

include the time and cost associated with campaign changeovers due to equipment 

setup and cleaning. The particularly long lead times associated with changeover, 

coupled with sensitive and costly intermediate storage product conditions present a
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significant challenge for production planning and scheduling. These are often 

compounded by inherent technical uncertainties that can impact costs and delivery. 

These include fluctuations in fermentation titres, purification yields, campaign 

lengths, product demands and contamination rates (Farid et al., 2005). Gosling

(2003) notes that significant economic benefits can be expected if these planning and 

scheduling challenges can be overcome. Better scheduling and planning is likely to 

improve plant capacity utilisation and thereby lead to increased productivity. In fact 

recent industrial reports (Fox, 2005) confirm that improved plant utilisation leads to 

increased sales and profitability.

An increasing number of large-scale biopharmaceutical companies have a 

portfolio of commercial products on the market as well as a pipeline of candidates 

under clinical evaluation. Developing a comprehensive manufacturing strategy to 

meet anticipated demands for both clinical trial and market material requires careful 

capacity planning. The launch of successful commercial products has often triggered 

companies to bridge in-house capacity via strategic partnerships with contract 

manufacturing organisations (Gottschalk 2005, Kamarck 2006). Consequently, more 

effective methods are required to manage and align production across several 

multiproduct facilities, including third party organisations, so as to ensure the 

availability of sufficient capacity. However, determining capacity needs for 

biopharmaceutical production is often a difficult process requiring predictions of 

product doses, market forecasts, production rates (titres, yields) and clinical/technical 

success rates. The issue of planning and scheduling is a major component within the 

key business and strategic issue of long term capacity management which remains at 

the forefront of the minds of the biopharmaceutical industry’s decision-makers since 

Immunex’s capacity shortage for the manufacture of its highly successful drug 

Enbrel and the resulting financial losses (Thiel, 2004).

1.4. Modelling Biopharmaceutical Manufacture

Many benefits are to be reaped through the implementation of computer modelling 

(as will be discussed in Section 1.5), however the effectiveness of computer

- 16-
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modelling is often limited by the complexity of the process which is to be modelled. 

Saraph (2001) notes some of the key features of biomanufacturing from a modelling 

perspective:

• A typical biomanufacturing process is a mix of discrete and continuous

processes.

• The batch sizes vary from stage to stage.

• Different production stages are physically and temporally separated by

intermediate quality control and quality assurance processes.

• Storage capacities at each stage differ.

• Product has limited shelf life at each stage of production and product potency is 

adversely affected by storage.

• Production capacity differs from stage to stage and so does staffing.

• There is no re-entrant flow of material.

• There are elaborate controls to ensure required cleanliness, which create further 

operational constraints.

• Sharing of common utilities.

Mustafa et a l (2006) note the scarcity of trained personnel and limited availability of 

fundamental physical property data as being some of the factors attributing to a lack 

of modelling work in the biopharmaceutical industry as compared to more 

established industries such as the chemical industry.

1.5. Objectives of Decision Support Tools

A decision support tool or system (DST) is defined broadly by Finlay (1994) as “a 

computer-based system that aids the process of decision making". Computer based 

tools which meet this definition are used extensively within the biopharmaceutical 

industry for a vast number of purposes ranging from accounting, lab-management, 

process development, risk-management, cost-benefit analysis, process scheduling

- 17-
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and ongoing process optimisation. However in this thesis the focus is on those used 

to aid manufacturing decisions.

Saraph (2001) proposed some relatively generic objectives for a DST that was used 

to aid biomanufacturing decision-making:

• To develop a better understanding of the existing manufacturing operations and 

capability.

• To identify the root causes, and potential solutions of operational problems.

• To analyse proposed solutions.

• To help in forecasting in order to identify potential opportunities and avoid 

potential pitfalls.

• To support the strategic decision making process which may consider a variety of 

features whether process, logistical or financial.

Williams (1999) proposed some typical objectives more specific to mathematical 

model building:

• To gain insight into the problem. The actual exercise of building a mathematical 

model often reveals relationships that were not apparent previously. As a result 

greater understanding of the problem is achieved.

• To identify non-obvious solutions to the problem. Having built a model it is then 

possible to analyse it mathematically and help suggest a course of actions that 

might not otherwise be obvious.

• To investigate extreme aspects of the problem. Computational experiments can 

be conducted when it is not possible or desirable to conduct an experiment in 

real-life (e.g. accident simulation models) and provide us with useful information 

concerning the problem under investigation.

Between the two sets of objectives, a good idea of the value decision support tools 

can add within the biopharmaceutical industry can be seen.
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Chapter 1. Introduction

1.6. Aims and Objectives

The aim of this work is to facilitate the biopharmaceutical industry’s strategic and 

operational decision-making by applying mathematical programming techniques fo r  

production planning o f  biopharmaceutical manufacturing facilities. It is motivated 

by the need for improved cost-effectiveness and better capacity management in the 

biopharmaceutical industry.

In order to achieve these goals, the following areas will be addressed:

• Medium term planning: this area is concerned with determining the optimal 

medium term production plans for a multiproduct multi-suite biopharmaceutical 

manufacturing facility. It will do so by capturing the characteristic bioprocessing 

features of the production planning problem in the biopharmaceutical industry.

• Medium term planning under uncertainty: this area is focused on understanding 

the impact of uncertainty on biopharmaceutical manufacturing production plans 

and the development of alternative approaches for the determination of the 

optimal medium term production plans for a multiproduct biopharmaceutical 

manufacturing facility under uncertain manufacturing conditions. Solutions 

should be achieved within a reasonable computational time without 

compromising the quality of the obtained solution.

• Long term planning: this area deals with longer term capacity management of 

biopharmaceutical facilities and the need to understand better existing capacity 

capabilities and to quantify the impact of different strategic operating polices on 

capacity decisions.

1.7. Thesis Outline

The thesis is structured as follows:

Chapter 2 presents a critical review of past work on production planning within the 

biopharmaceutical and associated industries, considering deterministic planning
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works in the medium and long term timescales, followed by a review of planning 

under uncertainty.

In Chapter 3, a deterministic mathematical programming formulation for medium 

term planning of biopharmaceutical manufacture is presented. The model is applied 

to two illustrative examples and is compared with an industrial rule-based approach.

Chapter 4 proposes a stochastic mathematical programming formulation based on 

two-stage programming for the medium term planning of biopharmaceutical 

manufacture under uncertainty. A hierarchical algorithm for the efficient solution of 

the problem is also presented and compared with the full space problem and a rolling 

horizon algorithm via a number of illustrative examples.

An alternative stochastic mathematical programming formulation based on chance 

constrained programming for the medium term planning of biopharmaceutical 

manufacture under uncertainty is presented in Chapter 5. The deterministic 

equivalent formulation is derived and compared to the approach presented in the 

previous chapter.

A multiobjective optimisation framework based on goal programming is proposed 

and used to tackle the problem of long term planning in the biopharmaceutical 

industry in Chapter 6. The problem is applied to an industrial case study and insights 

are drawn through a variety of studies.

Chapter 7 presents a plan for the commercialisation of this work and Chapter 8 

discusses the related validation and regulatory issues.

Finally, Chapter 9 concludes the thesis summarising the work that has been done and 

outlines possible directions for future work in the area of production planning of 

biopharmaceutical manufacture.
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Chapter 2

Literature Survey

Planning and scheduling is a vital component of cost-effective manufacturing 

operations in the biopharmaceutical and process industries in general. Planning and 

scheduling activities are very closely related, as the decisions made at the planning 

level have a strong influence on scheduling. Hence, it is necessary to make a 

distinction between the two activities as the focus of this work is that of production 

planning rather than scheduling. Usually, planning means the generation of 

production plans for longer periods of time typically months to years, given forecasts 

for prices and product demands. In contrast, scheduling refers to the assignment of 

resources to activities, sequencing of activities and determination of starting and 

ending times for the execution over a short period of time, typically days to weeks.

In this chapter the key works of relevance to the problem of production planning of 

biopharmaceutical manufacture are reviewed. First the general problem of planning 

and scheduling in the biopharmaceutical industry is discussed highlighting some of 

the related works in this area (Section 2.1). Deterministic planning works in the 

closely related process industries are then presented (Section 2.2), this is followed by 

works in the area of planning under uncertainty (Section 2.3). Finally, concluding 

remarks are drawn whereby the scope and the motivation of this work are clarified in 

the light of earlier work (Section 2.4).
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Chapter 2. Literature Survey

2.1. Planning and Scheduling in the 

Biopharmaceutical Industry
Planning and scheduling of biochemical processes has received relatively little 

attention. To date, custom planning methods used by biomanufacturers remain 

relatively simplistic e.g. spreadsheets and t-cards using industrial 

experience/common sense approaches, typically supported by enterprise and material 

requirement planning (ERP & MRP) software which are often limited to customer 

order, inventory and resource management. To some extent this can be attributed to 

the lack of relevantly trained personnel (Mustafa et al., 2006). However, given the 

potentially vast number of possible solutions due to the combinatorial nature 

(exponential growth in solution space with linear growth in problem size) of 

scheduling and planning problems, it is clear that there is significant scope for 

improvement. General and specialist bioprocess simulation software packages have 

been used for solving planning and scheduling problems within the 

biopharmaceutical industry.The packages have mostly been used for debottlenecking 

of equipment and utility usage, examples include Batch Plus (Shanklin et a l , 2001), 

Chemsim (Gosling, 2003) and SuperPro designer (Petrides and Siletti, 2004). 

However industrial accounts highlight their inadequacy when challenged with 

dealing with larger problems involving multiple products and suites. These packages 

probably remain best suited to “what i f ’ scenario-based analysis, whereby 

manufacturing challenges such as the impact of resource bottlenecks and delays on 

schedules are evaluated through discrete event simulation techniques.

Most recent published optimisation/mathematical programming approaches for 

planning and scheduling of biochemical processes have focused on the short term 

time scale. Examples of such approaches include the work of Iribarren et al. (2004), 

where an approach for simultaneous process development and short term process 

scheduling for recombinant protein production is developed. Samsatli and Shah

(1996) devised a scheduling approach for short term batch process scheduling of 

biochemical processes based on the State Task Network (STN) formulation proposed 

by Kondili et a l (1993). Most recently Tsang et a l (2006) presented a planning and
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scheduling model applied to a flu vaccine manufacturing facility whereby planning 

for upstream/downstream production was tackled via a heuristic scheduler and 

detailed scheduling via an optimisation model based on the STN formulation. The 

applicability of the model was demonstrated via a number of debottlenecking studies 

on cleaning operation and installation of new equipment items. Industrial accounts 

also indicate that more recently mathematical programming based systems are being 

considered for deployment in the industry, especially for larger scale planning and 

supply chain problems.

2.2. Production Planning:

Deterministic Optimisation Models
The bulk of relevant research in the area of production planning has been conducted 

on and applied to the traditional batch process industries. Of particular relevance and 

similarity are the pharmaceutical, food and beverage and speciality chemicals 

industries, which share some of the key features of the biopharmaceutical production 

planning problem. The main similarity between these industries is the use of a batch 

mode of operation to produce often small quantities of a large number products using 

multipurpose equipment. Batch production involves an integer number of batches 

where a batch is the smallest quantity produced, with batches often produced in long 

sequences, referred to as a “campaign”, to avoid changeover delays, contamination 

risks and cleaning costs.

Kallrath (2002) notes some of the key structural objects in planning models used in 

the process industries which are also shared with the biopharmaceutical industry:

• Locations are often used for production and storage sites.

• Facilities are often characterised by functional properties such as capacity, 

throughput rates, product recipes, yields, fixed and variable costs or storage 

limitations.

• Demand points are used to represent customers, regional warehouses or 

distributors who specify the amount of product they request.
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• Inventories may be tanks or warehouses which can be fixed or movable entities, 

with product storage being either product specific or global.

• Products may be classified as raw materials, intermediates or finished and salable 

products, where product demands may be characterised by volume, selling price, 

package type, time, origin and/or location.

• Suppliers which may provide product under different offering schemes.

Models used for planning in the process industries may involve a very large variety 

of manufacturing and logistical features. Some of the key features shared with the 

biopharmaceutical manufacturing planning problem are detailed below:

• Batch production enforcing the production of an integer number of batches at a 

predefined batch size.

• Buying, building, closing or selling manufacturing sites.

• Campaign production enforcing the production of a minimum number batches in 

sequence.

• Penalty costs applied if deliveries arrive after their due dates.

• Multiple locations can be used for production sites, storage sites or demand 

points.

• Multi-stage production allowing for the production of multiple intermediates and 

their intermediate storage before the manufacture of the final product.

• Multiple time periods for definition of the time horizon which can be continuous 

with non equidistant time periods or discrete fixed size time periods.

• Product Shelf-life allowing for product aging to be traced and product disposal 

for expired products.

Planning is part of the supply chain management problem and typically focuses on 

medium term sales and inventory planning or more long term strategic planning and 

capacity analysis. Hence we divide the review of the key works into two parts, 

medium term planning and long term planning.
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2.2.1. Medium Term Planning

The medium term planning timescale typically refers to a duration of a few months 

up to a few years and is also often referred to as production scheduling, campaign 

planning or medium term planning. The research in this area is often hard to 

distinguish as planning or scheduling as many works attempt to address both 

simultaneously or address a hybrid problem composed of features from both 

problems.

The production planning problem in the process industries has received great 

attention over the years with one of the earliest noted works being that of Mauderli 

and Rippin (1979), but has since come a long way as practitioners have continually 

adapted to the industry changes and trends. Some excellent reviews of recent work 

have been conducted by Applequist et al. (1997), Shah (1998), and Kallrath (2002). 

Many approaches have been used for planning in the process industries, and are often 

divided into heuristic and mathematical programming approaches.

Heuristic methods are concerned with formulating rules for the determination of 

sequences of activities and include dispatching rules or rule-based approaches. They 

are often derived from industrial rules of thumb and used in combination with other 

methods to reduce the resulting problem size and complexity when solving real-life 

problems, often at the cost of achieving sub-optimal solutions. Dispatching rules are 

more commonly associated with scheduling problems; however, they have also been 

applied to planning problems. Some relevant dispatching rules are: First come first 

served (FCFS), Earliest due date (EDD), Shortest processing time (SPT), Longest 

processing time (LPT), Earliest release date (ERD) and Weighted shortest processing 

time (WSPT). Pinedo (2002) details some useful dispatching rules commonly used in 

scheduling practice.

Meta-heuristic or Stochastic-search methods are products of the evolution of 

heuristic-based approaches and typically involve the simulation of a given system 

and the evaluation of its objective function. They have been used to tackle planning 

problems in the process industries; examples include Genetic Algorithms, Simulated 

Annealing and Tabu Search. These methods have in common that they lack proof of 

convergence and a dependable measure of solution quality. However, they can often
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be effectively used to improve a given solution by performing a local search and 

achieve sub-optimal solutions within reasonable time-scales where more rigorous 

mathematical programming based methods may fail. Examples of Metaheuristic 

methods are detailed below.

Genetic algorithms (GA) (Goldberg, 1989) are Metaheuristic methods that use 

techniques inspired by evolutionary biology such as inheritance, mutation, selection, 

and crossover. GA’s are typically implemented as a computer simulation in which a 

population of abstract representations (called chromosomes) of candidate solutions 

(called individuals) to an optimisation problem evolves toward better solutions. Lohl 

et al. (1998) compared a GA and a mathematical programming approach for 

sequencing and scheduling of a polymer production process and found the GA to be 

a better approach if an improved solution was needed quickly. However, it generally 

underperformed in terms of solution quality when compared with the mathematical 

programming approach. More recently, Beming et al. (2004) presented a Genetic 

algorithm for planning and scheduling within a general framework for integrated 

supply chain management in the chemical process industry. Their algorithm 

considered the production schedules of all the plants involved simultaneously and 

provided a better overall solution than one obtained by individually optimising 

production schedules.

Simulated annealing (SA) (Kirkpatrick et al., 1983) links the probability of accepting 

a solution which is worse than the reference solution to a temperature-like parameter 

based on an analogy which describes the cooling of metals. One of the earliest 

applications to planning and scheduling was by Ku and Karimi (1991) in which it 

was applied to the scheduling problem of chemical batch processes. Tandon et al. 

(1995) presented an SA algorithm for minimising tardiness (difference between 

completion time of late products and their prior due dates) in a network of single 

stage, unrelated parallel units. The algorithm was found to outperform an established 

heuristic improvement method in larger test problems. Lee and Malone (2000) 

proposed an SA algorithm for batch process planning of a multi-plant structure and 

compared the approach with a number of dispatching rules, whereby the SA 

algorithm was found to be superior in terms of solution quality. Ryu et al. (2001) 

presented an SA algorithm for production scheduling based on the minimisation or
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earliness and tardiness when meeting due dates. They demonstrate the approach to 

find good solutions in relatively short computational times.

Tabu search (TS) (Glover and Laguna, 1997) is essentially an adaptive local 

neighbourhood search procedure. It hierarchically directs one or more local search 

procedures in an aggressive pursuit of the global optimum, while using memory 

functions to avoid being trapped in local optima. The work of Barnes and Laguna 

(1993) was one of the first successful applications of TS to production scheduling. 

Oh and Karimi (2001) developed a TS implementation for the solution of a mixed 

integer non linear programming (MINLP) formulation applied to campaign 

sequencing and scheduling of an industrial sized problem. A more recent application 

is that of Bhushan and Karimi (2004) in which TS and SA algorithms were 

developed for the solution of a continuous-time mixed integer linear programming 

(MILP) formulation for scheduling production an automated wet-etch station. The 

TS algorithm was found to outperform the SA algorithm, achieving near optimal 

solutions.

Shah (1998) notes that although heuristic approaches are more representative of 

current industrial practice, the bulk of planning and scheduling research has been 

more directed towards the development of mathematical programming approaches as 

they are able to represent the majority of the interactions present. Some of the 

general benefits of mathematical programming were discussed in Section 1.5. More 

specifically mathematical programming problems with a convex solution structure 

are able to provide a proof of convergence and a dependable measure of solution 

quality. For these reasons planning and scheduling problems are most commonly 

formulated as mixed integer linear programming (MILP) problems in which an 

objective function is maximised or minimised subject to constraints. The most 

common planning applications in the batch process industries include campaign 

planning and sequencing models in which the optimal quantities and sequence of 

manufacturing campaigns is determined, and aggregate planning and scheduling 

approaches in which a rough cut production plan is determined which forms the basis 

of input data for detailed short term scheduling.
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Papageorgiou and Pantelides (1996a) presented a comprehensive review of earlier 

work on campaign planning and proposed a general formulation for the problem. In a 

companion paper (Papageorgiou and Pantelides, 1996b), where computational issues 

were discussed, a decomposition approach for the efficient solution of 

larger/practical problem instances was presented. McDonald and Karimi (1997) 

presented a medium term planning model for parallel semicontinuous processors 

(multiple facilities or production lines) where they incorporated minimum-campaign- 

length constraints in their formulation, but did not consider the detailed timings of 

campaigns. Karimi and McDonald (1997) also presented two multiperiod, 

continuous-time formulations for the detailed timings of campaigns using time slots 

in a companion paper. Ierapetritou and Floudas (1998a) introduced a continuous time 

formulation for production scheduling of batch processes, which was later extended 

and applied to continuous and semicontinuous processes (Ierapetritou and Floudas, 

1998b). In the previous two formulations demands were due at the end of the time 

horizon; the authors later extended the work to allow for multiple intermediate due 

dates (Ierapetritou and Floudas, 1999), and found their proposed approaches to 

perform favourably in each case when compared to similar work in the literature. 

Gupta and Maranas (1999) developed a hierarchical Lagrangean relaxation procedure 

for the solution of the earlier medium term planning model by McDonald and Karimi

(1997). When applied to tackling large-scale problems the approach was found to 

make considerable computational savings as compared to direct solution via 

commercial MILP solvers. Oh and Karimi (2001a) presented an MILP model for 

production planning assuming a single production line and sequence dependent set­

up times for in optimal lot (batch) sizing. An equivalent MILP formulation was 

derived and solved using three different problem specific heuristic-based algorithms. 

Oh and Karimi (2001b) later developed an MINLP formulation for the sequencing 

and scheduling of the lot sizing problem with a Tabu search implementation for its 

solution. Whereas the previous models of Oh and Karimi (2001a, 2001b) were based 

on a single production line assumption, Lamba and Karimi (2002a) presented an 

MILP model for scheduling multiproduct facilities with multiple production lines. 

They later introduced (Lamba and Karimi, 2002b) a two-step decomposition scheme 

in which the problem was decomposed into campaign generation, and campaign
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sequencing and scheduling. Lim and Karimi (2003) used asynchronous time slots 

and showed improvements on the work by Lamba and Karimi (2002a, 200b) which 

assumed synchronous timeslots (such that the total resource usage or the total 

production at any time within a period can be seen). Jackson and Grossman (2003) 

proposed a multiperiod nonlinear programming model for the production planning 

and product distribution of several continuous multiproduct plants located at 

different sites and supplying different markets. They developed spatial (between 

plants and markets) and temporal (between time periods) solution techniques based 

on Lagrangean decomposition for the problem’s efficient solution.

In many planning formulations reported in the literature a discrete representation of 

time is used; however this often presents difficulties when a very large number of 

time periods are required for the modelling of the necessary time granularity. Hence, 

a number of authors have presented temporal aggregation methods in which larger 

time-slots are used at the planning level and more detailed time-periods are used for 

short term scheduling decisions. Wilkinson et al. (1995) were one of the first to 

apply such approaches in the process industries. They applied a general temporal 

aggregation scheme for planning and scheduling to the RTN (resource task network) 

scheduling formulation approach presented by Pantelides (1994), later applying their 

time aggregation /disaggregation approach to a three-plant and 100 product supply 

network problem based on an industrial case-study (Wilkinson et al., 1996). Basset et 

al. (1996a, 1996b) presented an aggregation procedure based on a similar temporal 

aggregation concept similar to that of Wilkinson et al. (1995, 1996) for the 

aggregation of large-scale problems using the STN formulation. Both authors 

implemented a backward rolling horizon algorithm, however Basset et al. (1996a, 

1996b) also aggregated tasks and units. Dimitriadis et al. (1997) proposed a similar 

aggregation approach based on the RTN formulation; however their concept was 

based on fixing binary variables in the MILP model for the time window under 

consideration. A more recent application of aggregation techniques in the 

pharmaceutical industry is that of Grunow et al. (2003), where they employ a number 

of different aggregations, specifically aggregating processing tasks into cascades, 

equipment units into sub-plants, and individual material-flows into material-flow 

patterns, while also employing a demand disaggregation procedure.

- 29-



Chapter 2. Literature Survey

2.2.2. Long Term Planning

Long term planning is concerned with strategic planning decisions often taken in 

years ahead of time. The most commonly tackled long term planning problem is that 

of capacity planning and product portfolio management (although the focus here is 

on the former), and is typically concerned with the best use of limited resources in 

the strategic decision-making related to new product development, the associated 

investments decisions for new manufacturing capacity and the necessary planning of 

production runs. This problem is of particular relevance in the pharmaceutical and 

biopharmaceutical industries where new products represent the lifeblood of the 

industry. A recent review of the pharmaceutical supply chain problem which covers 

relevant capacity planning work in the pharmaceutical industry is presented by Shah

(2004). Shah (2005) later presents a review of process industry supply chains where 

more general work on capacity planning in the process industries is covered.

One of the earlier works presented in the process industry literature is that of 

Sahinidis et al. (1989) where they presented a multi-period model for the optimal 

process selection from a network of competing processes, the determination of the 

timing and sizing of any necessary process expansions and the optimal production 

amounts. Liu and Sahindis (1996a) presented a tighter linear programming (LP) 

relaxation of the earlier model by Sahinidis et al. (1989) and used a cutting plane 

approach for the efficient solution of a problem involving a large network of 

chemical processes. Jain and Grossmann (1999) presented two different MILP 

formulations for the resource constrained scheduling of testing for new product 

development. Papageorgiou et al. (2001) considered the capacity planning problem 

in the pharmaceutical industry where new manufacturing capacity could be allocated 

to existing or new sites. The focus of the work was that of modelling financial flows 

and taxation issues pertinent to global trading. Most recently Sundaramoorthy and 

Karimi (2004) presented a multi-period, continuous-time, MILP model that addresses 

the campaign planning problem in pharmaceutical production and considered 

strategic decisions surrounding the potential outsourcing of production tasks, they 

illustrated the effects of new product introductions on plant production plans, the
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benefits of outsourcing, and sudden plant/demand changes through a number of 

illustrative examples.

Given the considerable uncertainty associated with long term decisions many 

relevant capacity planning works in the literature allow for the impact of uncertainty 

in making strategic decisions. Hence the remaining works on long term planning will 

be covered in the following section where relevant work considering the 

representation and solution of problems involving uncertain parameters and related 

issues will be reviewed.

2.3. Production Planning under Uncertainty

The applications discussed thus far clearly illustrate the utility of optimisation 

models in improving productivity and profitability in manufacturing operations. 

However, the presence of various uncertainties in the process industries (e.g. 

uncertainty in production rates and costs, demand, raw material availability, prices 

etc.) complicates the optimisation process. This is particularly true of planning and 

scheduling problems where plans or schedules that do not account for uncertainty 

may be rendered unsatisfactory in quality or even infeasible. Hence, in cases where 

uncertainty is found to have a considerable impact on performance, planning 

approaches should incorporate the relevant uncertainties in their proposed modelling 

assumptions. In the next sub-section relevant works in the bioprocess literature are 

highlighted, and in the following sections the application of general approaches for 

optimisation under uncertainty to production planning in the process industries are 

reviewed and discussed.

2.3.1. Uncertainty in the Biopharmaceutical Manufacture

The planning and scheduling of biopharmaceutical manufacture is complicated by 

inherent technical uncertainties that can impact costs and delivery. These include 

fluctuations in fermentation titres, purification yields, campaign lengths, product 

demands and contamination rates (Farid et al., 2005). Many of these fluctuations 

directly impact the core decisions taken in planning and scheduling. For example,

- 31-



Chapter 2. Literature Survey

variable fermentation titres (grams of product per litre of broth) directly determine 

the number of batches required to satisfy product demands and hence impact on 

customer demand satisfaction and profitability.

Recently, discrete event simulation techniques have gained popularity for modelling 

the logistics of operations and studying the impact of bioprocess uncertainties. 

Recent work includes simulation studies which look at the impact of various 

uncertain parameters on both operational and financial outputs. Most recently, 

Brastow and Rice (2003) used simulation modelling to help answer a variety of 

strategic questions associated with the drug development lifecycle, they considered a 

number of different case studies based around analysing different manufacturing 

capacity strategies and quantifying the impact of uncertainty via Monte-Carlo 

simulation. Farid et al. (2005) used Monte-Carlo simulation to consider the impact of 

uncertainty in product titres, demands and market penetration on different 

manufacturing strategies for the production of biopharmaceutical drug candidates. 

Lim et al. (2005) used a similar technique to consider the impact of uncertainty in 

product titres, downstream processing yield and contamination rates on different 

pooling strategies for perfusion culture type processes, while Biwer et al. (2005) 

investigated the impact of uncertainty in various technical, supply chain and market 

related parameters on penicillin V production. The work of Rajapakse et al. (2005) 

employed Monte-Carlo simulation to study the impact of key technical and market 

uncertainties on the biopharmaceutical drug portfolio problem and highlighted the 

benefits of incorporating uncertainties when ranking different manufacturing and 

capacity planning strategies. The aforementioned works share the focus of improving 

decision making given the key sources of uncertainty within the commercial 

biomanufacturing environment and demonstrate that the modelling of key 

uncertainties can aid risk mitigation and result in more effective use of resources and 

improved overall economic performance.

2.3.2. Optimisation under Uncertainty

For simplicity in modelling large-scale optimisation problems, variability can in 

some cases be ignored and modellers can assume that the parameters of the problem 

are exactly known or that they can be approximated (or forecasted) with a very small
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margin of error. This is done because it results in a model that is easier to solve. 

However, in most cases these parameters have an underlying probability distribution 

and should be modelled as random variables. This clearly complicates the problem 

but, on the other hand, makes the results obtained more realistic. There are a number 

of different ways of incorporating this randomness into the overall model.

Traditionally, the treatment of uncertainty is realised through the use of stochastic 

optimisation approaches. These approaches recognise the presence of multiple data 

instances that might be potentially realised in the future. The optimisation models 

then attempt to generate a decision that maximises (or minimises) an expected 

performance measure, where the expectation is taken over an assumed probability 

distribution. In many cases, when multiple uncertain factors exist in the input data, 

assumptions of distributional independence among factors are made. After possible 

scenarios (data instances) or probability distributions are fed into a model, a 

stochastically optimal solution is generated. Sahinidis (2004) presented a recent 

review of the literature on optimisation under uncertainty. The topics covered include 

two-stage programming, probabilistic (chance) programming, fuzzy programming 

and dynamic programming. Biegler and Grossmann (2004) presented a general 

review of past optimisation work where the key advances in optimisation under 

uncertainty were covered.

Most optimisation under uncertainty problems are typically represented via two-stage 

or multistage (more than two stages) stochastic programming formulations (We refer 

the reader to Kail and Wallace (1994) and Birge and Louveaux (1997) as basic 

references for the theory and application of two-stage stochastic programs). In two- 

stage programming strategic decisions are made in a first stage (here and now) while 

operational decisions are made in a second stage (wait and see) through the 

introduction of future “scenarios” for different realisations of uncertain events. The 

characteristic challenge of such problems is the inevitable explosion in the number of 

scenarios with increasing products and/or outcomes. Hence, multi-stage 

programming problems typically require solution via efficient solution procedures 

such as scenario aggregation (whereby certain scenarios are strategically identified 

and aggregated) and problem decomposition procedures (for example the breakdown 

of the overall problem into smaller sub-problems where decisions are fixed, and then
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later solving a larger problem with binary variables fixed) which exploit the specific 

problem’s structure (Kali and Wallace, 1994). The resulting explosion in problem 

size often leads to large-scale combinatorial optimisation problems which can be also 

be solved though the use of heuristic algorithms which have been discussed above in 

Section 3.2.1. Reeves (1995) presents a number of modem heuristic techniques for 

large-scale combinatorial problems (simulated annealing, Tabu search, Genetic 

algorithms, Lagrangean relaxation and decomposition), while Wolsey (1998) 

discusses several heuristic algorithms for the solution of integer programming 

problems (dive-and-fix, relax-and-fix, cut-and-fix).

There have been many applications of two-stage and multistage-programming 

techniques to planning in the process industries in recent years. Such work includes 

that of Ierapetritou and Pistikopoulos (1994a) who present two-stage programming 

models for short term production planning and, long range planning and capacity 

expansion. They present a decomposition-based solution approach for the problems 

solution which was later extended by Ahmed et al. (2000) by introducing remedial 

measures for the avoidance of local minima. Ierapetritou et al. (1994b) also 

investigated the effect of uncertainty on future plant operation and expansion using 

two-stage stochastic programming formulations, they also investigated the 

behavioural issues surrounding the here-and-now and the wait-and-see models 

through the concept of the value-of-perfect-information (VPI). This value is 

described as the difference between the two alternative behavioural models of actions 

under uncertainty. Liu and Sahinidis (1996b) presented a two-stage stochastic 

programming approach for process planning under uncertainty and devised a 

decomposition algorithm incorporating Monte-Carlo sampling for the solution of the 

stochastic model. They also proposed a method for the comparison of two-stage 

programming and fuzzy programming approaches, which was found to favour two- 

stage programming. Clay and Grossmann (1997) developed a methodology that 

considered stochastic linear programming models for production planning where 

coefficient costs and uncertainties were represented by finite discrete probability 

distribution functions. They proposed a sensitivity-based successive disaggregation 

algorithm for the problem’s solution was based on applying mean-value 

approximations over partitions of the problem space, and was found to outperform a
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number of Bender’s decomposition variants. Rotstein et al. (1999) presented a two- 

stage stochastic programming model for the capacity planning, investment strategy 

and product selection decisions in the pharmaceutical industry. They proposed a 

hierarchical scenario tree aggregation procedure for the solution of the resulting 

multiscenario problem and illustrated its applicability through a case study from the 

pharmaceutical industry.

Other more recent works addressing these problems include the work of Gupta and 

Maranas (2000) who formulated a two-stage stochastic model composed of a here- 

and-now production model and a wait-and-see inventory and distribution model 

based on the deterministic production planning model of McDonald and Karimi 

(1997). Maravelias and Grossmann (2001) presented a multi-period MILP model for 

the simultaneous resource constrained scheduling and planning of batch 

manufacturing facilities. They also developed a heuristic algorithm for the problem’s 

solution based on Lagrangean decomposition which provided near optimal solutions. 

Balasubramanian and Grossmann (2002) proposed an aggregation/disaggregation 

branch and bound algorithm. The problem was solved in time stages, disaggregating 

a given stage at each stage, while aggregating the remaining stages and replacing the 

remaining scenarios with the mean values of the uncertain parameters. Gupta and 

Maranas (2003) tackled the supply chain under demand uncertainty problem. They 

extended their previous work (Gupta and Maranas, 2000) to incorporate some of the 

key features of the supply chain decision-making process under uncertainty and 

demonstrated the model’s applicability through a planning case study. Gatica et al. 

(2003a) presented a multi-stage programming formulation for capacity planning 

under uncertainty in the pharmaceutical industry. The authors later developed (Gatica 

et al., 2003b) a scenario aggregation-disaggregation approach for the problem’s 

solution, whereby scenarios were grouped into predetermined clusters based on 

mapping between products and clinical trials outcomes. Balasubramanian and 

Grossmann (2004) compared deterministic, two-stage and multi-stage formulations 

with a shrinking horizon multistage programming approximation algorithm for batch 

scheduling based on STN type formulations. The algorithm solved a number of two- 

stage problems fixing the schedule as it moved along the time horizon. Oh and 

Karimi (2004) presented an MILP model for deterministic capacity-expansion
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planning and material sourcing in chemical supply chains, which was also extended 

to incorporate regulatory features (corporate tax and import duty) and, uncertain 

demands and import duties using a simply scenario-planning approach. The focus of 

the work was on the modelling of the regulatory features and rather than the 

uncertain parameters. Finally, Levis and Papageorgiou (2004) proposed a two-stage 

programming formulation for pharmaceutical capacity planning and developed a 

hierarchical algorithm in which the first step used an aggregated version of the 

model, with a reduced variable space. This problem was solved initially where first 

stage (strategic) decision variables were calculated. In the second step, a detailed 

model was solved subject to the decision variables estimated in the previous step.

Given the considerable efforts involved in finding efficient solutions to multi­

scenario type representations alternative approaches to problem formulation without 

forgoing solution quality would be ideal. Hence many practitioners have developed 

alternative approaches to optimisation under uncertainty and applied them to 

problems involving planning under uncertainty. Some of these approaches have been 

considered for planning in the process industries and include Chance Constrained 

programming, Fuzzy programming, Dynamic programming and Real-Options-based 

valuation.

The Chance constrained programming (CCP) approach was first presented by 

Chames and Cooper (1959) for representing uncertain model parameters. The 

approach aims to satisfy constraints with a specified probability or confidence level 

and by leveraging concepts from probability theory provide the optimal solution at 

that confidence level. Relevant works incorporating chance constraints in the area of 

planning include that of Petkov and Maranas (1997) who proposed a stochastic 

extension to the multiperiod planning and scheduling model proposed by Grossmann 

and Birewar (1990). Faced with uncertain single or multiple product demands with 

prespecified probability levels (chance constraints), they proposed deterministic 

equivalents to the stochastic elements and investigated different modelling features 

and their effect on computational performance. Gupta et al. (2000) developed a 

combined CCP and two-stage stochastic programming methodology which was 

utilised for capturing the trade-off between customer demand satisfaction and 

production costs. More recently, Wan et al. (2005) developed a simulation based
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optimisation framework applied to supply chain management and accommodated 

chance constraints in order to ensure service levels were met. The aforementioned 

works share in common the employment of chance constraints for the specification 

that an objective or constraint must be met with a certain probability. The 

characteristic challenge associated with the majority of CCP approaches within the 

process industry literature, including those mentioned above, involves the derivation 

of the appropriate deterministic equivalents of the chance constraints and the 

efficient solution of the resulting optimisation problem.

Fuzzy programming (Zimmermann, 1978) is a mathematical programming approach 

based on the fuzzy set theory of Zadeh (1965), where uncertain parameters in a 

mathematical model are considered fuzzy numbers defined on a fuzzy set associated 

with a membership function. The objective function may be a fuzzy goal or a crisp 

function and similarly to the CCP approach the constraints may allow some 

violations. Models aim to take into account a) the decision maker's expectations of a 

target range of the objective value and b) soft constraints based on decision making 

in a fuzzy environment (Bellman and Zadeh, 1970). Some recent applications to 

planning include Liu and Sahinidis (1997) who presented a fuzzy programming 

model for process planning under uncertainty and proposed a global optimisation 

algorithm for its solution. Balasubramanian and Grossmann (2003) proposed a fuzzy 

programming formulation using interval arithmetic principles and applied it to 

flowshop scheduling and new product development problems. They also developed a 

Tabu search implementation for the solution of larger cases.

Decision-making under uncertainty is broadly considered to have two major 

branches, stochastic programming techniques (which have thus far been covered) and 

stochastic optimal control or Markov decision processes which are mathematical 

frameworks for modelling decision-making in situations where outcomes are partly 

random and partly under the control of the decision maker. More specifically they 

are processes for the characterisation of sequential decision problems in which the 

decision-makers choose an action in the “state” (of a system) occupied at any 

decision “epoch” (fixed point in time) according to a decision rule or policy. 

Dynamic programming techniques are the most commonly used approach for the 

solution of these problems and are concerned with devising algorithms to compute an
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optimal control policy to a given Markov decision process. Cheng et al. (2004) 

presented a review and comparison of optimal control and stochastic programming 

techniques. The authors noted that stochastic programming is more suitable for 

solving long term strategic planning problems, such as capacity planning, with a 

relatively few number of periods and scenarios, while stochastic optimal control, on 

the other hand, works better for operational control problems such as production and 

inventory control. An example of such work is Cheng et al. (2003) who posed the 

representation of multistage stochastic problems as discrete time Markov decision 

processes with recourse and suggested their possible solution using a dynamic 

programming strategy. Discussing the previous work, Jung et al. (2004) noted that 

while such a strategy was found to be conceptually very attractive, it was limited 

computationally by the effects of “state” dimensionality and the presence of 

constraints which involve variables from different stages, as is the case with 

inventory balances in planning problems. The authors (Jung et al., 2004) proposed a 

simulation-based optimisation approach for supply chain management under 

demands uncertainty in which they combine deterministic mathematical 

programming planning and scheduling formulations with discrete event simulation 

and employ Monte-Carlo simulation to account for various uncertainties. The 

approach demonstrated much promise for applying combined 

simulation/mathematical-programming approaches for the treatment of planning 

problems by leveraging the strengths of both approaches.

Real-option-based valuation (ROV) frameworks for hedging under uncertainty have 

also been applied to planning in the process industries. This concept is based on 

arbitrage free pricing (financial option pricing theory) and risk-neutral valuation (risk 

free-rate of return), and presents an alternative to traditional NPV analysis. ROV 

replaces the rate of return with a risk-free rate of return, and the true probability 

distribution (of the uncertain parameter) with a risk-neutral probability. A recent 

application is that of Gupta and Maranas (2004) where they proposed a Real- 

Options-based framework for strategic decision making under uncertainty and 

presented a number of illustrative examples including an application to supply chain 

planning under demand uncertainty. A comparison with traditional NPV analysis
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showed that considerable monetary savings can be achieved though the application 

of ROV frameworks.

2.4. Concluding Remarks
In Section 2.1, the works relating to planning and scheduling in the 

biopharmaceutical industry were presented. Few applications of planning and 

scheduling of bioprocessing have been considered in the literature. Of those 

applications most were found to focus on the short term scheduling of bioprocesses, 

and with a few exceptions were limited to commercial simulation tools directed at 

the biopharmaceutical industry. While such simulation approaches have had some 

success in aiding decision-making in the biopharmaceutical industry they are 

reported to fall short when it comes to production planning, where the combinatorial 

problem of the optimal sequencing and timing of campaigns is required along with 

the optimisation of related production variables such as inventory and changeover 

costs. There was found to be a distinct lack of mathematical programming works 

published on planning and scheduling in the biopharmaceutical industry, particularly 

on production planning.

In Section 2.2, the problem of production planning in the process industries which 

shares many similar features to that of the biopharmaceutical industry was reviewed, 

while in Section 2.2.1, short and medium term planning works in the process 

industries were presented. A vast number of works on production planning and 

aggregate planning works have been presented in the past, many of which have been 

applied within the closely related pharmaceutical industry which shares many of the 

features of the biopharmaceutical production planning problem, however none have 

been applied specifically to the biopharmaceutical planning or encompass all the 

characteristic features of the problem.

Given the shortcomings of simulation tools and industrial rule based methods 

reportedly used within the biopharmaceutical industry, and the lack of any distinct 

models within the process industry literature encompassing all the features of the 

biopharmaceutical planning problem, Chapter 3 presents a mathematical
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programming formulation for the medium term planning of biopharmaceutical 

manufacture incorporating the characteristic features of the production planning 

problem in the biopharmaceutical industry.

In Section 2.3, the problem of production planning under uncertainty was introduced 

and relevant work in the area reviewed. In the first part, Section 2.3.1, some of the 

key issues and relevant works in the biopharmaceutical manufacturing industry were 

presented. Most of the work presented was aimed at demonstrating the impact of 

uncertainty on biopharmaceutical manufacture and evaluating the performance of 

different operating strategies under uncertainty. However there did not appear to be 

any work in the bioprocess literature which could determine optimal operating 

strategies under uncertainty, this paucity was also true for both planning and 

scheduling under uncertainty.

In Section 2.3, approaches for tackling optimisation under uncertainty were reviewed 

and relevant applications to planning under uncertainty within the process industry 

literature presented. The majority of works for planning under uncertainty were 

based on stochastic programming techniques most notably two-stage programming, 

which when applied to practical sized problems gives rise to large-scale 

combinatorial optimisation problems. Many efficient solution approaches for the 

solutions of these problems, some of which were general while others were more 

problem specific. The majority of stochastic programming approaches were aimed at 

tackling demand uncertainty in the medium term or investment and capacity related 

decisions in the longer term. However, there did not appear to be any relevant 

models tackling the type of uncertainty faced in the biomanufacturing industry such 

as variable fermentation titres, adding to the lack of deterministic planning models 

aimed at tackling production planning in the biopharmaceutical industry. Hence, in 

Chapter 4, a two-stage programming approach for medium term planning under 

uncertainty is presented along with a hierarchical algorithm for the problem’s 

efficient solution.

Alternative techniques for optimisation under uncertainty were also reviewed. Aimed 

at providing more computationally efficient approaches without forgoing solution 

quality, a number of approaches including chance constrained programming, fuzzy
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programming, real-options-based modeling and dynamic programming have been 

applied to production planning under uncertainty in the process industries with much 

success. But again there is a distinct lack of relevant work for the biopharmaceutical 

industry. Hence, in Chapter 5, an approach based on the concepts of chance 

constrained programming is presented as an alternative to traditional multi-scenario 

type stochastic programming techniques.

In Section 2.1, a number of works based on discrete event simulation techniques 

were presented as decision-making aids for the biopharmaceutical industry, however 

apart from the work of Rajapakse et a l (2005), which focuses on the product 

portfolio problem, there appears to be a paucity of work which aid the decisions 

related to the long term strategic problem of capacity planning. Mathematical 

programming approaches aimed at tackling long term strategic planning problems 

were discussed in Section 2.2.2 and Section 2.3.2. A number of these works tackled 

the problem of long term capacity planning in the pharmaceutical industry. Some 

focused on the product portfolio problem, while others focused on meeting the long 

term demands given the considerable uncertainty associated with the long term 

timescale. Generally, most of the work focused on developing detailed models and 

algorithms for the representation and solution of such problems. In Chapter 6, a 

mathematical programming approach for long term capacity analysis in the 

biopharmaceutical industry is presented where the focus is the representation of some 

of the characteristic features of the long term production planning problem in 

biopharmaceutical manufacturing along with a methodology for the quantification of 

different operating strategies (through multi-objective optimisation techniques) in the 

long term time-scale. In Chapter 7, a commercialisation plan is presented which may 

serve as a good starting point for biomanufacturers wishing to incorporate 

simulation-based optimisation approaches in their decision-making.
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Chapter 3

Deterministic Medium Term Planning 
of Biopharmaceutical Manufacture

3.1. Introduction

The work presented in this chapter addresses the biopharmaceutical manufacturing 

challenge of optimal planning of production i.e. the determination of the optimal 

amounts to be produced and the optimal sequence of products needed in order to 

maximise cost-effectiveness of a multiproduct facility. The proposed model aims to 

tackle problems over a “medium term” time scale of 1-2 years. In the formulation 

presented a multiproduct biopharmaceutical facility is required to satisfy a set of 

customer demands while minimising operating, storage and changeover costs. A 

penalty is introduced for late delivery of product. The problem formulation presented 

in this work is based on the capacity planning model developed by Papageorgiou et 

al. (2001) which embodies various features of the pharmaceutical industry. The 

production constraints are defined so as to provide a more accurate representation of 

production time since this will be a key need in medium term planning as opposed to 

the case of longer term planning where a more relaxed description may be adequate. 

The production constraints address the issue of the long lead times (duration of setup 

and cleaning at the start of a new campaign) introduced during campaign changeover
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which can have a great impact on the overall plant capacity utilisation. The campaign 

planning problem is formulated as an MILP problem whereby a discrete time 

representation is used and production is represented as a rate.

While a large proportion of production planning problems in the biopharmaceutical 

industry are adequately represented by assuming negligible intermediate storage post 

harvest and prior to purification, in many cases industrial practice allows for flexible 

intermediate storage. Examples include perfusion processes where one fermentation 

batch is harvested in a “feed and bleed” mode continuously feeding the fermenter 

with nutrients and harvesting for pending downstream purification. Cases also exist 

where fermentation throughputs differ to those of the corresponding downstream 

purification. This can arise when contract manufacturers are required to fit processes 

to existing equipment with fixed sizes. Here the harvest may be divided into sub­

batches which are processed downstream when equipment becomes available. To 

allow for such intermediate storage and differing throughputs between harvest and 

purification a similar dual production constraint representation to that of the capacity 

planning model of Gatica et al. (2003) was implemented.

To demonstrate the approach developed in this chapter two examples based on 

industrial data were solved. The first example is that of a multiproduct production 

planning problem involving a typical number of mammalian cell products 

manufactured over a 1 year production time horizon. The second example again 

involves mammalian cell products but this time with suite-specific manufacturing 

considerations and differing production throughputs, the products are manufactured 

over 1.5 year time horizon. The results from both examples are compared with those 

obtained using an industrial rule-based approach.

3.2. Problem Features

The problem of biopharmaceutical production planning is characterised by some 

unique features of biomanufacturing. These features and their role in production 

planning are discussed below:
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3.2.1. Biomanufacturing and Plant Capacity

The problem of interest in this chapter is planning of primary manufacturing within 

multiproduct biopharmaceutical facilities. These facilities can have multiple suites or 

production lines and are usually divided further into rooms separating various 

sections of the manufacturing process e.g. upstream fermentation and downstream 

purification.

Plant capacity utilisation is an important issue in the biopharmaceutical industry and 

optimal planning of manufacture offers an opportunity to improve capacity 

utilisation (Mallik et al., 2002). It has been estimated (Mallik et al., 2002) that a 

typical new mammalian cell-culture facility would increase annual revenues by $380 

million with a 25% increase in plant utilisation. Ransohoff (2004) estimates that the 

carrying costs (variable costs incurred by holding inventories) for a typical 

500kg/year monoclonal antibody (mAb) facility working at 50% under utilisation are 

$ 2 -3  million/month, while 50% under capacity based on oncology mAb pricing can 

result in an estimated loss of $40 -  50 million/month in operating profit. Hence 

optimising plant utilisation is crucial for both cost-effective manufacture and for 

maintaining competitiveness within the biopharmaceutical industry. It is likely to 

become even more crucial as generics enter the market in greater numbers (Coe, 

2001).

3.2.2. Product Storage

Many biopharmaceutical industry products suffer from product instability (Li et al., 

1995) and hence must to be stored under specialised and costly storage conditions. 

Hence product shelf-life is a major concern in biopharmaceutical manufacture and 

can play an important role within production planning. Wilkins et al. (2001) reports 

that specialised storage methods such as cryopreservation enable manufacturers to 

de-couple steps in production processes by storing and transporting intermediates 

and products under defined, stable and validatable conditions, hence offering 

increased flexibility for scheduling and planning. Storage of harvested intermediate 

products can have an impact on product stability and result in shorter product 

lifetimes, making optimal intermediate storage strategies paramount to the realisation
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of efficient capacity utilisation. Another important inventory issue is the very costly 

nature of manufacturing biopharmaceuticals. The high value of these products 

imposes a limit on the size of any product inventory held as this may constitute tying 

up working capital which is required elsewhere.

3.2.3. Regulations and Campaign Changeover

Validation within the highly regulated biopharmaceutical manufacturing industry is 

an expensive and time consuming process. Manufacturers are regulated to 

demonstrate the ability to reproduce consistently a process which meets 

predetermined specifications and quality attributes at various critical stages of the 

manufacturing process with a lot-to-lot consistency being realised (Lim et a l , 2004). 

These stringent regulations lead to rigorous cleaning and sterilisation between 

individual product batches as well as between new campaign start-ups. 

Contamination can lead to the introduction of long delays and unwelcome cost to the 

manufacturing process as a result of lost product due to batch failures. Long lead 

times typical in biopharmaceutical manufacture due to upstream process bottlenecks 

and the required validation processes are major motivations for manufacturing in 

long campaigns and avoiding frequent campaign changeovers. While on the other 

hand inventory cost, limited product lifetimes and multiple orders of a product 

constitute the necessity for campaign changeover. This presents a genuine decision 

making challenge for biomanufacturers.

3.2.4. Product Demand

Meeting demand dates in the biopharmaceutical industry is a highly sensitive issue 

due to the high value of the products involved. Mallik et al. (2002) estimate for 

example, that the lack of manufacturing capacity for Immunex’s highly successful 

arthritis drug Enbrel cost the company more than $200 million in lost revenue in 

2001. Companies must therefore strive to capture every day of revenue generation by 

ensuring an adequate supply of product. Customer demands within the 

biopharmaceutical manufacturing industry are typically the result of a negotiation 

whereby order quantity, delivery date and any variability on this is regulated by a

- 45-



Chapter 3. Deterministic Medium Term Planning o f Biopharmaceutical Manufacture

contract. Customers and manufacturers will agree on this taking into account existing 

capacity and goodwill. Penalties and manufacturer liability are usually agreed for late 

deliveries.

3.3. Problem Statement

A formal statement for the problem of campaign planning of biopharmaceutical 

facilities can be stated as follows.

Given:

• A set of products.

• A set of fermentation and purification suites.

• Production rates, lead times and production throughputs (correspondence 

factors).

• Product lifetimes, storage costs and storage capacities.

• Product demands, sales prices, and late delivery costs.

• Manufacturing and campaign changeover costs.

• Minimum and maximum campaign durations.

Determine:

• Campaign durations and sequence of campaigns.

• Production quantities along with inventory profiles.

• Product sales and late deliveries profile.

Objective:

• Maximise manufacturing profits.
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3.4. Mathematical Formulation

A mathematical formulation composed of an objective function and constraints is 

derived in order to represent and solve the biopharmaceutical production planning 

problem. The mathematical formulation along with the modelling assumptions is 

explained in this section. One of the main assumptions employed in the development 

of the production constraints was the introduction of a continuous rate of production 

to represent the batch manufacture of biopharmaceuticals. In this each batch is 

treated as a “black box” as this captures the necessary level detail required by the 

problem’s time scale ( 1 - 2  years). Figure 3.1 along with the following section 

explains the concept behind this.

The repeating period from tl  to t5 shown in Figure 3.1 as EB is the effective batch 

time. A continuous production rate rp (batches per unit time) can be used to describe 

this repeating sequence of batches:

B = rpT (1)

where B is the amount produced and T  is the total campaign duration.

Despite the fact equation (1) ignores the duration of the first batch, it can prove a 

valuable approximation in cases of planning over long timescales where there are a 

large number of batches and lead times (in this case the time it takes to generate the 

first batch of a campaign) are not particularly long. However in the case where there 

are not a sufficiently large number of batches being produced and a higher degree of 

accuracy is needed, the above rate approximation may not be acceptable as the lead 

time will skew the rate and may result in poor quality or infeasible plans.
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Figure 3.1: The black box approximation using an example Gantt chart o f a process 

producing n = 5 batches o f a given product p, where a is the duration o f the first batch and

EB is the effective batch time.

An extension to this rate constraint is proposed for more accurate representation of 

lead time a which is equal to the duration of the first batch of a campaign plus any 

start up time required for setup/cleaning.

The time taken for the production of n batches is described by constraint (2):

T = a  + (E B * {n -\))  (2)

where T is the total campaign duration, n is the total number of batches and EB is the 

effective batch time, the repeating period within the campaign.

The representation shown above is extended to allow for cases where there is a need 

for intermediate storage. The black box rate approximation shown in Figure 3.1 has 

been modified to incorporate the feature of intermediate storage post upstream 

fermentation and pre-downstream processing (purification). The concept of this 

modification is shown in Figure 3.2. The proposed biopharmaceutical production
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planning formulation follows below. Figure 3.3 shows example configurations for 

the upstream production.

Downstream

Changeover

Figure 3.2: The extension o f the black-box model allowing for intermediate storage.

Time Line

Bioreactor

Purification suite

Storage

Figure 3.3: Two possible scenarios where pooling is used to accommodate the different 

throughputs o f the upstream and downstream manufacturing capacities running either one

(a) or two (b) bioreactor suites.

All products p  undergo downstream manufacturing in a suite i and upstream 

manufacturing in a suite j  over a time period t.
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3.4.1. Production Constraints

As biopharmaceutical production takes place in individual manufacturing suites, it is 

separated into upstream and downstream by two rate equations as in the work of 

Gatica et al. (2003). Constraints (3) and (4) represent the production constraints for 

crwcfe/intermediate product, and final product. Upstream production, CPipt, and 

downstream production, FPjpt, are represented by continuous production rates for 

crude/upstream, CRP, and final/downstream production, FRP which are combined 

with their respective upstream and downstream lead times, ap. This allows for set-up 

and cleaning time before the first batch of crude product is made. pp allows for the 

time it takes for the necessary amount of crude product to be produced in order to 

produce one batch of final product, and to hence calculate the appropriate production 

times. Upstream production time, CTipt, and downstream production time, FTjph show 

the duration of manufacture of each product p  within each team period t. If a product 

p  is selected for manufacture at a given suite i or j  at time t a lead time, ap, and/or f3p 

will only be included to that campaign duration to account for the setup and cleaning 

if binary variables Zipt and/or Wjpt are equal to 1 (denoting the start of a new 

upstream/downstream campaign).

Binary variables Yipt, and Ujpt are introduced to denote whether or not a product p  is 

manufactured in suite i or j  at time /. In order to enforce the relevant production lead 

times constraint (5) is introduced. It enforces that Zipt in constraint (3) will only be 

activated if product p  is not manufactured upstream in the previous time period M ,

i.e. it is the start of a new campaign upstream. While constraint (6) enforces that Wjpt 

in constraint (4) will only be activated if  product p  is not manufactured downstream 

in the previous time period M , i.e. it is the start of a new campaign downstream.

CFipt — %ipt + CRp (CTipt a  pZ ipt) V i,p ,t (3)

F P jPt =  W JPt +  F R P ( F T jPt ~  P p W j p t ) (4)

(5)

^  jp t  -  F ' jp t F j p J ~l Vj ,p ,t (6)

- 50-



Chapter 3. Deterministic Medium Term Planning o f  Biopharmaceutical Manufacture

In order to represent the lack of a lead time when existing crude product is held in 

storage, constraint (7) enforces that if any crude product p  is held in storage prior to 

downstream production/purification then the inclusion of a lead time /3P to the 

downstream production time will not happen. Hence the only instance in which WJpt 

is equal to 1 is when both Zipt and Xjpt are equal to 1.

IX '
w ip< -  + X jp l  ~ 1 *j , p , t  (7)

In order for the production constraints to capture the required campaign changeover 

considerations, constraints (8) and (9) ensure that at most one product p  undergoes 

manufacturing in any given suite i or j  at any given time period t. This is necessary 

for the effective operation of the new campaign selection/changeover variables in 

constraints (1-5).

YZ‘P‘-X V M  (8)
p

Y/,< (9)

3.4.2. Timing Constraints

In some cases, manufacturers enforce minimum and/or maximum campaign lengths 

in order to maximise efficiency or to allow for relevant maintenance/slack. 

Constraints (10-13) represent the appropriate minimum and maximum production 

time constraints for both fermentation suites i and purification suitesy, where CTpmin, 

FTpmin, are the minimum upstream and downstream campaign durations, CTpmax, 

FTpmax, are the maximum upstream and downstream campaign durations and Ht is the 

size of the time horizon. These constraints are only active if their respective binary 

variables Yipt and Ujpt are equal to 1, otherwise the production times are forced to 0.

C T fmYipt<CTipt V i.p ,t (10)
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(11)

F T’T 'U  < FT, ( 12)

V j,P f (13)

3.4.3. Storage Constraints

The following constraints enforce an inventory balance for upstream and 

downstream production and forcing total downstream production to meet product 

demand. In constraint (14) the amount of crude product p  stored at the end of the 

time period CIpt, is equal to the amount at the previous time period CIpt.i, plus the net 

amount produced during the time period CPipt, less the amount processed 

downstream FPjph and the amount wasted due to the expired product shelflife CWpt. 

In constraint (15) the amount of final product p  stored at the end of time period FIpt, 

is equal to the amount at the previous time period FIpt.i, plus the net amount 

produced during the time period FPJpu less the amount sold Sph and the amount 

wasted due to the expired product shelflife FWpt.

The Ap symbol represents a production correspondence factor which allows the 

specification of the respective throughputs of the crude (upstream fermentation) and 

final (downstream purification) production. Ap may be an integer or a fraction 

depending on which production (upstream or downstream) throughput is greater. 

Factors greater than 1 denote a relatively greater upstream throughput, while factors 

less than 1 denote a relatively smaller upstream throughput e.g. a factor of 0.5 

signifies that for every two upstream batches one downstream batch is produced.

CIpt = CIpM  + Y JCpiP> Xp ) f j PiPt ~ CWP> Vp,t ( 14)
j

F I p ,  =  p I P , t - \  + Y J F P JP‘ ~ S P ‘ ~ F W p < \fp,t ( 15)
j
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The amount of upstream and downstream product stored over period t cannot be 

negative and should not exceed the respective maximum available product storage 

capacities, Cp and Fp.

0 <CIp t<Cp \/p,t (16)

0 <FIp t <Fp \/p,t (17)

Both upstream and downstream product and final product are constrained by limited 

product lifetimes, the total amount of stored crude and final product p  cannot be used 

after the next f p or pp time periods respectively.

d p t  ~ T ^ p e  Vp,r (18)
j  0=t+1

FIp, ^  Y j SP° VP’< ( 19)
e=t+1

Constraint (18) ensures the lifetime of the crude product by enforcing that it is 

processed downstream in less than Cp time periods from when it is stored upstream, 

while constraint (19) ensures that final product is sold in less pp time periods from 

when it is stored downstream.

3.4.4. Backlog Constraints

Late deliveries are undesirable, and hence a penalty Apt is incurred for every time 

period t that a given batch of product p  is late meeting a product demand Dpt. This 

penalty is minimised in the objective function.

Apt =Apt_i + Dpt - S pt V/?,£ (20)
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The strategic obrichve in this I c emulation w v~ nuvcimtse operating profit. This is 

represented by an objective toiedion which, is considered to be the difference 

between “total sales” with each batch sold a? a price ;.y, and “total operating costs” 

which include batch rn&nnfaebiring costs of r;P per batch, changeover i/̂ , per batch, 

storage ry.per bemh and catch, late delivery penalties Ap per batch, and waste

dispose.1 colts rpper cakb. Ah costs arc .,n AAati /e monetary units (imu)”.

[MoAT MP]

Maximize

prof • F T .  • v A  ■••'-y-f- ->,w. - '^ c W p t
P !

y p p Fpjp.-+ « 'A * » »  121)

Subject to: constraints (1 -  SO).

The complete formulation h4P encompassing equations (1 -  21.) corresponds to a 

mixed-miegcr Unear programming (MTLF) model.

3.5. Illustrative Examples

In this section two typical hiophatriacemk-d production planning problems are 

solved using the mathematical formulation presented in Section. 3.3.

The data used was based on real industrial information which includes lead times 

(days), production rates (batches/day' and product demands (hatches of product). 

These were extracted from industrial case studies (BioPharm Sendees Ltd, London, 

U.K.; Farid, 2001). Commercial data such as sales prices, manufacturing and penalty 

costs were selected based on discussions with industrialists and are consistent with a 

recent review of the bmmcnu momring industry by Ginsberg ei al. (2002).
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Both example problems were implemented in GAMS (1998) using the 

CPLEX/MILP solver with a 5% margin of optimality and were all performed on an 

IBM RS/6000 workstation.

3.5.1. Example 1: General multiproduct multisuite 
manufacture.

This first example encompasses the general features of the biopharmaceutical 

medium term planning problem and by comparison to industrial rule-based planning 

demonstrates the value of the proposed mathematical formulation. Example l ’s 

problem definition and associated data are given below:

• A multiproduct facility with two fermentation suites and two purification suites. 

All production suites do not have a product specific manufacturing functionality. 

Figure 3.4 illustrates the product manufacturing routes for three products PI, P2 

and P3.

• Three “mammalian cell” products are assumed (P1-P3), with one or two product 

orders each.

• A one year production horizon, with six time periods t each two months long, i.e. 

the production time horizon Ht, is 60 days long.

• The due date and demands profile is shown below in Table 3.1. Orders were 

assumed to be due at the end of each two month time period t. Early delivery is 

infeasible and late deliveries are penalised for each late period.

• Production rates, lead times and related parameters used in this example are 

shown in Table 3.2.

• Lead times ap and pp are in “days” and are assumed to be inclusive of seven days 

of product changeover related cleaning time.
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Table 3.1: Demand profile for Example 1, showing each product demand and the time

period it is due*.

Product Time Periods

1 2 3 4 5 6

PI 6 6

P2 6

P3 8 8

♦Note: All demands are in number o f  batches

Table 3.2: All relevant parameters used in Example 1.

Product Param eter data fo r  Upstream production i Param eter data fo r  product p

Production Lead Product Storage Minimum Storage Sales Manufacturing Waste

rate time lifetime, Capacity campaign cost price cost Disposal

C R P a p Cp c p length P p t )P nP cost

(batches/ (days) (time (batch/ CTmm p (rmu/ (rmu/ (rmu/ t p

day) periods) time riod) (days) batch) batch) batch) (rmu/

batch)

PI 0.05 30 1 10 20 5 20 2 5

P2 0.045 32 1 10 21 5 20 2 5

P3 0.08 22.5 1 10 12.5 5 20 2 5

Product Parameter data for Downstream production j Parameter data for product p

Production Lead Product Storage Minimum Storage Lateness Changeover Production

rate, time, lifetime Capacity campaign cost penalty cost factor

F R P Pr o p F p length w p 5 p V p A, p

(batches/ (days) (time (batch/ F T ^ p (rmu/ (rmu/ (rmu/

day) periods) time (days) batch) batch) batch)

period)

PI 0.1 40 3 40 10 1 20 1 1

P2 0.1 42 3 40 10 1 20 1 1

P3 0.1 34.5 3 40 10 1 20 1 1

Note that the sales prices and associated costs of production are identical for each 

product. This is so not to bias the production of any particular product.
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F e r m e n t a t i o n  s u i t e  1 D S P  s u i t e  1

F e r m e n t a t i o n  su i t e  2 D S P  s u i t e  2

Figure 3.4: The functionality o f the multisuite biopharmaceutical facility in Example 1.

Our proposed mathematical programming (MP) approach was compared with an 

industrial scheduling approach based on rules to demonstrate the effectiveness of the 

model. Traditionally much of the planning is done based on experience or on 

industrial rules, whereby typically products will be manufactured in singular long 

campaigns on a first come first served basis (earliest demand first), unless there is an 

obvious reason not to do so. This heuristic is summarised into three rules, as shown 

below:

1. Manufacture products in order of the product with the earliest demand first.

2. Allow a campaign to be split if  manufacturing a product violates product lifetime 

constraints.

3. If a single campaign for a given product on a particular suite is unable to meet 

product demand on time, allow a campaign to be started on an alternative suite if 

available.

This industrial rule based (IRB) approach was used to develop a production schedule. 

A comparison of the results obtained by applying MP and IRB to Example 1 is 

shown in Table 3.3.

An objective function value of 487 rmu is achieved for MP which corresponds to a 

72% profit margin, while IRB achieves an objective function value of only 430 rmu 

which corresponds to a 64 % profit margin. This was calculated as: the total profit as 

a proportion of the total sales. The difference in objective function is mainly
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attributed to the 4 late batch penalties and the extra storage cost incurred by IRB. The 

results in Table 3.3 clearly show MP outperforming IRB in terms of punctuality and 

therefore profitability. Capacity utilisation is comparable, with IRB having a slightly 

higher capacity utilisation for both upstream and downstream (though at the expense 

of late batches).

Comparative graphical representations of the results are shown below in Figures 3.5, 

3.6 and 3.7. Note that in Figure 3.5 each box/instance is colour coordinated to 

represent the particular product selected for manufacture. The number o f  batches 

produced is noted underneath each instance followed by the production time in days 

in brackets. The production suites are denoted i and j  for upstream and downstream 

respectively.

Table 3.3: Comparison between solutions from the industrial rule based (IRB) approach and 

the proposed mathematical programming (MP) approach for Example 1.

Approach Objective Upstream Capacity Downstream Capacity Cost incurred as a result

function (rmu) Utilisation Utilisation o f  late batches

(%) (%) (rmu)

IRB 430 85 67 80

M P* 487 89 71 20

* Note: This problem was solved in 16 seconds.

Production schedule for Example 1: (Generated using MP) Production schedule for Example 1: (Generated using IRB)

Suite: i1 P3 |P3 | |P3 Suite: i1 P2 |P2 |P2
4(60) 4(50) 2(50) 3(60) 4(50) 2(50) 2(54) 2(44) 2(44) 2(50) 2(40) 2(60)

Suite: i2 P2 |P2 | P2 |P3 Suite: i2 P3 |P3 |P3 |P3
2(54) 2(44) 2(44) 4(60) 2(50) 3(60) 4(60) 4(50) 4(50) 4(50) 2(50) 3(60)

Suite: j1 P3 jP3 | Suite: j1 P2 |P2 |P2
3 (54.5) 5(50) 2(50) 3(30) 2(50) 5(50) 2(52) 2(20) 2(20) 2(50) 4(40) 6(60)

Suite: j2 P2 IP2 |P2____ |P3 JP3 I Suite: j2 P3 |P3 fP3 |P3 I
2(52) 2(52) 2(20) 3 (54.5) 5(50) 3 (54.5) 5(50) 4(40) 4(40)

0 1 2 3 4 5 6  0 1 2 3 4 5 6

Time Periods Time Periods

Figure 3.5: Production schedules fo r Example 1. Coloured boxes show which product is 

being manufactured in which suite, followed by number o f batches produced and production

time.
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Inventory chart for Example 1 (Generated by MP) Inventory chart for Example 1 (Generated by IRB)

7<A
•  ft.c  6 a
m 5 

CD
s 4
«  3A
E 2
3 * 1

0

E

■ P1 □  P2 □  P3 Hint P3i

I
3 4

Time periods

•s 5
5 4■O 3
E I3  2

*  1 -  

0

H

□ P2 □ P3 Hint. P3

3 4

Time periods

Figure 3.6: Inventory charts for Example 1. Each coloured bar shows how much product is

being stored and in which time period.

Sales and Demand Profile for Example 1 (Generated by MP) S ales and  Dem and Profile for Exam ple 1 (G enerated  by IRB)
■ ■ ■  Sales P1 [— =! Sales P2 I------ 1 Sales P3

Sales P1 r —□ Sales P2 r------1 Sales P3 —B— Demand P1 ■■■X" Demand P2 A Demand P3
—Q— Demand P1 •■•X- Demand P2 Demand P3

8
7

<A
6

CO 5
o 
&4

z
2

1

0

2 —

62 4 51 3

Time Periods Time Periods

Figure 3.7: Sales & demand profiles for Example 1. Each coloured bar shows the sales o f 

different products, while the respective demand is shown via lines and markers.

A number of points relating to Example 1 can be made:

• Production plans -  Figure 3.5 shows the production schedules for both MP and

IRB. In MP’s production schedule product 2 is manufactured in one long

campaign as it has only one order date, however due to the scattered demands 

there is value in a changeover for both products 1 and 3, thereby minimising 

inventory cost.

• Campaign durations -  Table 3.4 shows that upstream plant capacity utilisation in

MP’s solution is particularly high at approximately 89 % (This is calculated as
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the percentage of potential production time used for manufacture). It is the 

upstream capacity utilisation which is most commonly the manufacturing 

bottleneck in biomanufacture (Petrides et al., 2004). This value of 89% is 

relatively high; the average biopharmaceutical industry capacity utilisation for 

biopharmaceutical manufacturing in 2003 was estimated to be 79% (Langer, 

2004).

• Inventory -  All intermediate and final product inventory for Example 1 is shown 

in Figure 3.6. In MP, intermediate storage is required for product 3 in time 

periods 1 and 4, as the crude product is stored until there is available downstream 

capacity in the next time period. The ability to reduce intermediate storage is 

beneficial since costly specialist storage conditions are usually required.

• Demand Vs Sales -  The product demands and Sales for Example 1 are shown in 

Figure 3.7. All product orders are met in full and on time apart from one batch of 

product 1 which is due in period 4 but is delivered in period 5. There is no 

product wastage as production is forced to produce an integer number of batches 

and production correspondence is one to one.

3.5.2. Example 2: Suite specific manufacturing and 
differing production throughputs.

In this example another typical industrial biopharmaceutical planning problem 

involving intermediate storage is represented and solved using the mathematical 

formulation derived in this chapter. This example differs from Example 1 in that the 

upstream fermentation suites are product specific reflecting differing product 

manufacturing requirements and validation issues common to contract 

biomanufacturers. Secondly the product sales prices and manufacturing costs differ 

between products which results in the priority manufacturing of the more profitable 

products. Also P3 and P4 have differing upstream production throughputs, which 

reflect another issue a contract biomanufacturer may have to deal with. Finally the 

problem is solved over a larger 1.5 year time horizon in order to demonstrate the 

increased complexity that would result. Figure 3.8 shows the possible manufacturing 

routes of PI - P4.
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Figure 3.8: The functionality o f the multisuite biopharmaceutical manufacturing in Example

Problem 2.

The features described below characterise the example being tackled to illustrate the

use of the proposed mathematical formulation. The problem definition and associated

problem data are given below:

• A multiproduct facility with multiple production suites: three fermentation suites 

and two purification suites.

• Four “mammalian cell” products with one or two product orders {PI, P2, P3 and 

P4).

• The due date and demands profile is shown below in Table 3.4, where orders are 

assumed to be due at the end of each time period t, where early delivery is 

infeasible and late deliveries are penalised for each time period they are late.

• Products PI and P2 have a one to one correspondence of upstream and 

downstream throughput; i.e. a downstream purification batch is produced for 

every fermentation batch. However for products P3 and P4 there is a two to one 

correspondence due to a lower fermentation throughput for both products. This is 

represented by production correspondence factors which are shown in Table 3.5.

• A 1.5 year production horizon, with nine time periods t each two months long, 

i.e. the production time horizon H  t is 60 days long.
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• Lead times are adjusted accordingly to represent the relevant throughput 

correspondences between upstream and downstream.

• Production rates, lead times and related parameters used in this example are 

shown in Table 3.5 below, sales prices and manufacturing costs are not identical 

which is realistic to industrial practice.

Table 3.4: Due date profile for Example 2*:

Product Time Period
1 2 3 4 5 6 7 8 9

PI 6 4 4
P2 4
P3

4

P4 6 8 10 10

*Note: All demands are in number o f  batches

Table 3.5: Parameters used in Example 2.

Product Param eter data fo r  Upstream production i Param eter data fo r  product p

Production Lead Product Storage Minimum Storage Sales Manufacturing Waste

rate time lifetime, Capacity campaign cost price cost Disposal

C R P a p Cp C p length P p t>P Tip cost

(batches/ (days) (time (batch/ CTmm p (rmu/ (rmu/ (rmu/ Tp

day) periods) time

period)

(days) batch) batch) batch) (rmu/

batch)

PI 0.05 30 1 10 20 5 25 5 5

P2 0.045 32 1 10 21 5 20 2 5

P3 0.08 22.5 1 10 12.5 5 17 1 5

P4 0.08 22.5 1 10 12.5 5 17 1 5

Product Parameter data for Downstream production j Parameter data for product p

Production Lead Product Storage Minimum Storage Lateness Changeover cost Production

rate, time, lifetime Capacity campaign cost penalty factor

F R P Pr o p F p length w p 5 P (rmu/ ^ p

(batches/ (days) (time (batch/ F T ^ p (rmu/ (rmu/ batch)

day) periods) time

period)

(days) batch) batch)

PI 0.1 40 3 40 10 1 20 1 1

P2 0.1 42 3 40 10 1 20 1 1

P3 0.1 44.5 3 40 10 1 20 1 0.5

P4 0.1 44.5 J 40 10 1 20 1 0.5
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A similar IRB approach was used to generate a production schedule for Example 2. 

Table 3.6 shows a comparison of the main results obtained by IRB and MP, while 

Figures 3.9, 3.10 and 3.11 show graphical representations of the production 

schedules, inventory charts and sales & demand profiles.

Table 3.6: Comparison between solutions from the industrial rule based (IRB) approach and 

the proposed mathematical programming (MP) approach for Example 2.

Approach
Objective
function

(rmu)

Upstream Capacity 
Utilisation 

(%)

Downstream 
Capacity Utilisation 

(%)

Cost incurred as a result 
o f  late batches 

(rmu)

IRB 384 84 66 340

M P * 539 84 78 180

* Note: This problem was solved in 284 seconds.

MP’s objective function of 539 rmu corresponds to a profit margin of approximately 

50 %, while IRB’s objective function of 384 a considerably lesser value of 35 %. The 

difference in profitability in this case is almost entirely due to the extra late demand 

penalty cost incurred by IRB. In the absence of the late demand factor, the resultant 

profits would be very comparable. The slightly lower downstream capacity 

utilisation of IRB is due to individual hatches of product being processed 

downstream in bulk rather than when they are required to be processed, resulting in 

late deliveries. MP comfortably outperforms IRB in this case which is consistent 

with industrial perspectives that increasing size and complexity of planning problems 

limit the value o f industrial rule based approaches.
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P ro d u c tio n  s c h e d u le  fo r E xam ple 2: (G enera ted  u s in g  MP) 

S u ite: i1

S u ite : i2 

S u ite : i3 

S u ite: j1 

S u ite : j2

P2 |P2 P1 P1 P1 P1 |P 2  |P2~
2 (54) 2 (44) 2 (50) 3 (60) 3 (60) 3 (60) 2 (54) 2 (44) 2 (50)

TP3~ |P3  |P 3  |P 3  |P 3
4 (60) 4 (50) 4 (60) 4 (60) 4 (60) 4 (50) 3(37.5) 4 (50) 4 (50)

P4 |P 3  |P3  |P 3  |P 3  |P 3  I
4 (60) 4 (50) 4 (50) 4 (5 0 ) 4 (6 0 ) 4 (50) 1(12.5) 4 (5 0 ) 4 (50)

P2 |P 3 |P 3  |P 3  |P 3  |P 3  |P 3
2 (5 4 .5 ) 4 (4 0 ) 2 (54 .5 ) 5 (5 0 ) 2 (54 .5 ) 4 (4 0 ) 2 (54 .5 ) 4 (4 0 ) 4 (4 0 )

2 (5 4 .5 ) 4 (4 0 )  2 (54 .5 ) 4 (4 0 )  2 (54 .5 ) 6 (60 ) 2 (5 2 ) 2 (2 0 ) 2 (5 0 )

0 1 2 3 4 5

Tim e P e rio d s

P ro d u c tio n  s c h e d u le  fo r E xam ple 2: (G en era ted  u s ing  IRB) 

S u ite : i1

S u ite : 12 

S u ite : i3 

S u ite : j1 

S u ite : j2

P2 |P2 P2 |P 2
2 (5 4 ) 2 (4 4 ) 2 (5 0 ) 3(60 ) 3 (6 0 ) 3(60) 3 (6 0 ) 2 (5 4 ) 2 (44 )

P4 1F4 P4 IP4 P3 |P3 |P 3 P3 |P 3  I
4 (6 0 ) 4 (5 0 ) 4 (5 0 ) 3 (37.5) 4 (6 0 ) 4 (60) 4 (5 0 ) 4 (5 0 ) 4 (5 0 )

P4 |P 4  |P4 |P 3 |P 3 |P3 |P 3 P3 |P 3
4 (6 0 ) 4 (5 0 ) 4 (5 0 ) 1 (22.5) 4 (50) 4 (5 0 ) 4 (5 0 ) 4 (5 0 ) 4 (5 0 )

P2 |P 2  | |P2 |P 2  I
2 (5 2 ) 2 (2 0 ) 2 (5 0 ) 3 (3 0 ) 3 (3 0 ) 3 (30 ) 3(30 ) 2 (5 2 ) 2 (20 )

P4 |P 4 IHIIIIIIlHlll |P 4 |P 3 |P3 |P 3 |P 3 |P 3  |
2 (54.5) 6 (60) 4 (40) 2 (20) 2 (54.5) 6 (60) 4 (4 0 ) 4 (40) 4(4 0 )

1 2 3

Tim e P e rio d s

Figure 3.9: Production schedules for Example 2. Coloured boxes show which product is 

being manufactured in which suite, followed by number o f batches produced and production

time.

Inventory chart for Example 2 (Generated by MP)

IP1 □  P3 □  P4 Hlrrt.P1 Bint. P2

1 1 1
Time periods

Inventory chart for Example 2 (Generated by IRB)

IP1 0 P 2  DP3 EDP4 Hint. P3 BInt. P4

Tim# periods

Figure 3.10: Inventory charts for Example 2. Each coloured bar shows how much product is

being stored and in which time period.
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Sales and Demand Profile for Example 2 (Generated by MP)

I Sales P1 52QQ Sales P2 

- Demand P1 ---X- Demand P2

Sales P3 E2Z3 Sales PA  

Demand P3 - - O -  Demand P4

Sales and Demand Profile for Example 2 (Generated by IRB)

Sales P1 szsz Sales P2 r~— i Sales P3 i ^ m  Sales P4

—9 — Demand P1 -• X - Demand P2 Demand P3 --Q -- Demand P4

1 2 3 4 5 6 7 8 9  

Time Periods

Figure 3.11: Sales & demand profiles for Example 2. Each coloured bar shows the sales of 

different products, while the respective demand is shown via lines and markers.

• Production plans -  Figure 3.9 shows the production schedules for MP and IRB. 

The production plan for MP is a mix of changeovers and long campaigns in order 

to avoid violation of product lifetimes. Downstream production is not 

campaigned as often due to the considerably shorter production times associated 

with downstream production.

• Campaign durations - Plant capacity utilisation is approximately 84% which is 

higher than the industry average (79%).

• Inventory -  All intermediate and final product inventory for Example 2 is shown 

in Figure 3.10. Intermediate storage is utilised giving the model a valuable extra 

degree of freedom, thus helping to avoid late deliveries. Two batches of product 

2 are stored in period 1, two batches of product 1 are stored in period 3, and three 

batches of product 1 are stored in period 5.

• Demands Vs Sales - The product demands and sales for Example 2 are shown in 

Figure 3.11. All demands are eventually met in full apart from one batch of 

product 1, which would inevitably be met in the next (tenth) time period. Late 

deliveries of product 1, 2 and 3 are observed, with the number of late batches 

being 3, 2 and 4 respectively. This is attributable to the distribution of the product 

demands and the respective product profit margins. The relative profit margin on
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each of products 1, 2 and 3 is 15, 16 and 14. Prioritisation by profitability 

explains the resulting order of the late batches of product.

The second example is intended to capture certain features of the biopharmaceutical 

manufacturing industry such as managing plant manufacturing capacity given 

multiple manufacturing suites and differing production throughputs. In the example 

solved the solution returned is in agreement with typical industrial manufacturing 

strategies; however certain aspects such as inherent client relationships which usually 

influence manufacturing strategies are not taken into consideration.

3.6. Conclusions

In this chapter a mathematical programming (MP) approach using an MILP 

formulation for medium term planning of biopharmaceutical manufacture has been 

presented. An improved formulation has been used to represent and solve two 

example problems based on real industrial data. Solutions to both examples 

generated using MP were compared to those generated by an industrial rule based 

(IRB) approach and demonstrated the value of the proposed approach. In both 

Examples 1 and 2 MP were shown to outperform IRB in terms of profitability, the 

difference in profitability can be mainly attributed to extra late batch penalties and 

storage costs due to the campaigning style employed. In the larger more complex 

Example 2 the profitability achieved by MP was considerably higher demonstrating 

the necessity for calculated decisions regarding campaign changeovers and inventory 

profiles. This confirms the ineffectiveness of IRB type approaches for solving larger 

more complex examples. In both examples, plant utilisation was high relative to 

typical industrial expectations, which in terms of manufacturing cost-effectiveness 

translates to improved profit margins.
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3.7. Nomenclature

Indices

i fermentation suites

j purification suites

P product

t , e time periods

Parameters

C p storage capacity of crude product /?, batches

C R ip production rate of product p  in suite i, batches per unit time

C Tminp minimum production time for product p  at time period t

max maximum production time for crude product p

D pt demand of product p  at time period t

Fp storage capacity of final product p , batches

FRjp production rate of product p  in suite j ,  batches per unit time

minr  1 p minimum production time for product p  at time period t

j-’rji maxr  1 p maximum production time for final product p

H t available production time horizon over time period t

a p lead time for production of first batch of crude product p

P  p lead time for production of first batch of final product p

CP life time of crude product p,  in number of time periods t
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ap life time of final product p , in number of time periods t

v p unit sales price for each batch of product p

rj p unit cost for each batch produced of product p

y  p unit cost for each new campaign of product p

S p unit cost charged as penalty for each late batch o f product p

p p unit cost for each stored batch of crude product p

co p unit cost for each stored batch of final product p

t p unit cost of disposing of a batch of product waste p

X p production correspondence factor for cmde to final production of

product p

Binary Variables

U jpt 1 if  final product p is produced in suite j  over period t\ 0 otherwise

Wjpt 1 if one or more campaigns are starting on i and j  at any given time

period t\ 0 otherwise

Xjpt 1 if a new campaign of final product p  is started in suite i over period

t; 0 otherwise

Y iPt 1 if  crude product p  is produced in suite i over period t; 0 otherwise

Z ipt 1 if a new campaign of crude product p  is started in suite i over period

t; 0 otherwise

Continuous Variables

C lpt amount of crude product p  stored in suite i over period t

CT ipt production time for product p  on suite / at time period t
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C Ttotu total production time for suite i over period t

C Wpt amount of crude product p  on suite i which is wasted over period t

FI pt amount of crude product p  stored in suite j  over period t

FT  jpt production time for product p  on suite j  at time period t

F T totjt total production time for suite j  over period t

F W pt amount of final product p  on suite j  which is wasted over period t

S pt amount of product p  which is sold over period t

Prof operating profit

A pt amount of product p  which is late over period t

Integer Variables

CP ipt amount of crude product produced in suite i over period t

FP jpt amount o f final product p  produced in suite j  over period t
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Chapter 4

Medium Term Planning of 
Biopharmaceutical Manufacture 
using Two-Stage Programming

4.1. Introduction

In the previous chapter, an optimisation-based approach for medium term planning 

of biopharmaceutical manufacture was presented using a deterministic mathematical 

programming formulation which determines the optimal production plans for a 

biopharmaceutical facility given fixed/known parameters. The overall problem was 

formulated as an MILP model based on a discrete time representation.

The deterministic approach was compared to an industrial rule based approach and 

was able to achieve considerable improvement in operating profits. However, the 

model did not account for an inherent feature of biopharmaceutical manufacture 

which is the uncertain conditions associated with this environment, namely variable 

batch titres (yields), contamination rates and campaign length (Farid et al., 2005). 

Schedules that do not account for these uncertainties are likely to lead to reduced 

operational performance. For example, variable fermentation titres (grams of product

- 70-



Chapter 4. Medium Term Planning of Biopharmaceutical Manufacture using Two-Stage Programming

per litre of broth) directly determine the number of batches required to satisfy 

product demands and hence impact directly on customer demand satisfaction and 

profitability.

Hence, focus of this chapter is the medium term planning of biopharmaceutical 

manufacture under uncertainty. The problem is formulated as a two-stage 

programming (multiscenario) MILP problem and an iterative algorithm is proposed 

for its efficient solution. This is tested on three illustrative examples of differing 

sizes and computational results are presented for the deterministic model, the full- 

space multiscenario model, a rolling horizon algorithm and the proposed iterative 

algorithm.

4.2. Problem Description

As was discussed in Section 3.2, the problem is characterised by some features fairly 

typical of process planning and scheduling problems such as late delivery penalties, 

multiproduct manufacture, inventory and capacity utilisation challenges, while other 

features are more specific to bioprocessing such as long lead times, specialist storage 

considerations and variable fermentation titres.

In recent work, (Farid et al., 2005; Lim et al., 2005; Biwer et al., 2005) the impact of 

some common uncertainties on biopharmaceutical manufacture were explored 

through the use of Monte-Carlo (MC) simulations, and the fermentation titre was 

found to be the most critical driver affecting both the cost of goods and the facility 

throughput. Hence, the focus of this work is improving decision making given the 

aforementioned key source of uncertainty within the commercial biomanufacturing 

environment. In this chapter the deterministic model presented in section (3.2) is 

extended to allow for variable fermentation titres which are reflected as fluctuations 

in the production rate o f product p, rp.

As was mentioned previously, when tackling optimisation problems under 

uncertainty, parameters assumed to be uncertain are often represented by discrete 

outcomes using a multiscenario stochastic (two-stage) programming approach. This
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approach is utilised by introducing three discrete outcomes (low, medium and high) 

for uncertain parameter rpit, where k, the number of possible scenarios is a function of 

the number of products p  and the number of outcomes o for uncertain parameter rpk. 

The total number of scenarios is equal to <f, hence in our problem the total number 

of scenarios is 3 .̂ This exponential relationship explains the combinatorial 

explosiveness that makes the solution of larger instances of this full-space 

multiscenario problem computationally intractable. This presents a genuine need for 

the efficient solution of this problem, ideally without sacrificing solution quality.

The overall problem of medium term planning of biopharmaceutical manufacture 

under uncertainty can be stated as follows:

Given:

• A set o f products.

• Production rates and lead times.

• Product lifetimes, storage costs and storage capacities.

• Product demands, sales prices, and late delivery penalty costs.

• Manufacturing and campaign changeover costs.

• Minimum and maximum campaign durations.

• Outcomes and associated probabilities.

Determine:

• Campaign durations and sequence of campaigns.

• Production quantities along with inventory profiles.

• Product sales and backlog profiles.

Objective:

• Maximise expected manufacturing profit.
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4.3. Mathematical Formulation

The formulation presented in this chapter is based on the deterministic medium term 

planning problem presented earlier (Section 3.2), here however the focus is shifted to 

tackling the impact of uncertainty.

The problem is formulated as a two-stage programming formulation. Index k  is 

introduced to production rate, rPk. Index k  is also introduced to all continuous 

variables rendering them second stage (wait and see) variables. Binary variables for 

production, Ypt, and changeover, Zpt do not take on new index k  as they are first stage 

decision variables (here and now) and allow for the selection of one operating 

schedule (production sequence) for all scenarios. The multiscenario formulation is 

presented below.

4.3.1. Production Constraints

Constraint (1) represents biopharmaceutical production. The number of batches 

produced of product p  at time period t in scenario k, Bptk, an integer variable, is 

calculated through production rate, rpk, which is combined with production lead time, 

ap. This lead time allows for the duration of the first batch of a campaign plus the set­

up and cleaning time before the first batch is started. Production time, Tptk, is the 

duration of manufacture o f each product p  within each time period t in scenario k. 

The logical incorporation of lead time is enforced by a binary variable Zpt. If a 

product p  is selected for manufacture at time t a lead time, ap, will only be included 

in that campaign duration to account for the setup and cleaning if  Zpt is equal to 1 

(denoting the start o f a new campaign).

Bptk = ^ pt ~^fpk(Bptk ~ a p Z pt) \/p ,t,k  (1)

Binary variable Ypt, is introduced to denote whether or not a product p  is 

manufactured at time t. In order to enforce the correct activation of binary variable 

Zpt, constraint (2) is introduced. It enforces that Zpl will only be activated if  product p  

is not manufactured in the previous time period t-1, i.e. start of a new campaign.
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Z p t ^ Yp t ~  Yp,t-1 Vp,t (2)

Constraint (3) enforces that at most one product p  undergoes manufacturing at any 

given time period, t.

v? (3)
P

4.3.2. Timing Constraints

In some cases, manufacturers enforce minimum and/or maximum campaign lengths 

in order to maximise efficiency or to allow for relevant maintenance/slack. 

Constraints (4) and (5) represent the appropriate minimum and maximum production 

time constraints, where Tpmin is the minimum campaign duration, Tpmax is the 

maximum campaign duration and Ht is the size of the time horizon. These constraints 

are only active if  Ypt is equal to 1, otherwise the production times are forced to 0.

T ™ Y p t < Tptk Vp,t,k  (4)

Tptk < min{rpmax, H, )rpt Vp,t,k  (5)

4.3.3. Storage Constraints

The following constraint enforces an inventory balance for production and forces 

production to meet demand. In constraint (6) the amount of product p  stored at the 

end of the time period t in scenario k, Iptk, is equal to the amount stored at the 

previous time period t-1, Ip,t-i,k, plus the net amount produced during the current time 

period t, Bptk, less the amount sold, Sptk, and the amount of product wasted, Wptk at the 

current time period t.

1ptk = Ip,t-l,k Bptk ~ Bptk ~ Wptk YP» k (6)

Constraint (7) bounds the amount of product p  stored over period t in scenario k so as 

not to exceed the maximum available product storage capacity, Cp.
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Iptk — Cp Vp, t ,k  (7)

In constraint (8) stored product is constrained by limited product lifetimes, whereby 

any product stored during time period t cannot be sold after the next time periods.

tJ<P
I  ptk — /  pQk Vp, t ,k (8)

e=t+i

4.3.4. Backlog Constraints

Late deliveries are undesirable, and hence a penalty Aptk is incurred for every time 

period t that a given batch of product p  in scenario k  is late meeting a product 

demand Dpt. This is represented by constraint (9). Late batches are penalised in the 

objective function.

A Ptk = A P,t-\,k + D Pt ~ S  ptk Yp, t, k (9)

4.3.5. Objective Function

The strategic objective in this formulation is to maximise expected operating profit, 

Eprof. This is represented by an objective function which is considered to be the 

difference between “total sales” with each batch sold at a price vp, and “total 

operating costs” which include the batch manufacturing cost at rjp per batch, 

changeover cost at \f/p per batch, storage cost at pp per batch and late delivery 

penalties of Sp per batch. All costs and prices are in relative monetary units (rmu). 

All variables in the objective that contain index k  are weighted by the probability of 

the occurrence of that scenario, probk.

[Model FULL]

Maximise

Eprof = 2 2 2  ] v ^ h ( vpSptk-VpBp,k-Ppip,k-^iApik> -2 2 jw  (io)
p t k  p i
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Subject to: constraints (1 -9 ) .

The complete formulation FULL encompassing equations (1 -  10) corresponds to a 

mixed-integer linear programming (MILP) model. A specialised iterative solution 

approach is proposed in the next section.

4.4. Solution Methodology

Solving realistic size problems as full-space multiscenario problems often results in 

large scale MILP problems unsolvable in a realistic time scale by traditional branch 

and bound methods (this will be demonstrated in the following section 4.4). This 

presents the need for more efficient solution procedures. The algorithm proposed in 

this chapter is based on a similar concept to that introduced in the work of Werner 

and Winkler (1995). They present a heuristic algorithm with two parts; a constructive 

and an improvement part. The algorithm uses heuristic insertion rules in order to 

construct a feasible schedule for the job-shop problem and iteratively improves the 

schedule by using a heuristic search method which utilises insights derived from the 

problem’s solution structure. The concept of constructing a preliminary schedule 

using a first stage and the iterative improvement of it in a second stage has been 

applied to industrial batch scheduling by Roslof et al. (2001), Mendez and Cerda 

(2003) and most recently by Castro et a l (2006).

Each of the aforementioned works utilise the construction improvement concept for 

the efficient solution of large scale deterministic formulations. Here, a 

construction/improvement algorithm for the efficient solution of the large scale two- 

stage, multi-scenario, mixed integer linear programming (MILP) model detailed in 

the previous section 4.2 is presented. The proposed algorithm, CON/IMP, is 

composed of the following steps:
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Step 1 - Construction (CON):

(i) Select order of insertion of products using random or
heuristic rules.

(ii) For the selected product, p * , expand rp. to r p. k while
other products remain as mean value, Fp .

(iii) Solve reduced two-stage model (FULL). Fix binary 
variables yp,#t and Zp*i t .

(iv) Reset rp./k to mean value, Fp .

(v) If all products are considered go to step 2 (i) , else
insert next product, p *: Go to step 1 (ii) .

Step 2 - Improvement (IMP):

(i) Using random or heuristic rules, select, n , products to 
be released by unfixing their binary variables while 
keeping fixed the binary variables of the remaining 
products fixed to previous solution.

(ii) Construct reduced two-stage model (FULL) with on
scenarios (with only the variables of the n selected 
products being scenario dependant).

(iii) Solve reduced two-stage model (FULL) . Fix binary 
variables of released products.

(iv) Repeat (i) , (ii) & (iii) until convergence is achieved.
(v) Run Monte-Carlo simulation to validate

solution/schedule.

In the first step (CON) o f the algorithm a schedule is constructed by way of 

sequential selection, optimisation and fixing of binary variables. The production 

schedule is constructed by consecutive insertion of products where the number of 

construction/ insertion steps is equal to the total number of products to be produced. 

For example, if  the first product to be selected is p i,  the production rate for p i , rpi, 

becomes rPik  as different discrete outcomes for production rate uncertainty are 

introduced, this means that the total number of scenarios k  is equal to the total 

number of discrete outcomes, o \  a linear relationship which replaces the exponential 

relationship encountered in the full space problem, oP. After the reduced problem is



Chapter 4. Medium Term Planning of Biopharmaceutical Manufacture using Two-Stage Programming

solved the binary variables associated with the p i, Ypu and Zpit are fixed and 

parameter rpi_k is reset to mean value, Fp . These steps are repeated until the binary

variables for all products are fixed and a full schedule has been constructed. The 

order of insertion may influence the quality of the solution obtained at the end of the 

construction stage, however this issue is averted by the introduction of the 

improvement stage, the second step of the algorithm. The solution schedule can be 

evaluated at this point, allowing the decision maker to decide if  they wish to continue 

to the next step, as the current solution may be of sufficient quality.

In the second step (IMP) of the algorithm, n products are released iteratively in a bid 

to improve the solution achieved at the end of the first “construction” stage, n 

products are selected for release whereby the binary variables for the selected 

products are unfixed and the mean production rates replaced with uncertain rates 

resulting in on scenarios. For example, for n = 2, and p  = 1 & 2, two products p i  and 

p2  are released, rpi is set to rpitk and rP2 set to rP2,k, which results in a considerable 

reduction in problem size, o2 instead of cP where p  is the total number of products. 

After this reduced problem is solved, parameters rpitk and rP2,k are reset to the mean 

value, Fp and their associated binary variables are refixed. This process is continued

iteratively, selecting n products randomly at each iteration until convergence is 

reached.

Convergence is defined as SU  consecutive iterations with no change to the solution 

schedule. Finally solutions schedules are evaluated via Monte-Carlo (MC) 

simulation. MC will be discussed further in the following section.

4.5. Illustrative Examples

Three examples of differing size are solved to illustrate the applicability of the 

proposed construction/ Improvement algorithm (CON/IMP). The examples are 

solved for two different variabilities for uncertain parameter rp, +/- 10% and +/- 

20%. The results achieved using CON/IMP are compared with those achieved by the
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deterministic model (DET) which differs from the formulation presented in this work 

only in that it does not contain the index k (introduced to allow for uncertain 

production rates) and hence assumes mean values for the uncertain parameter rp, the 

full-space, two-stage programming model (FULL) presented in this work, and a 

rolling horizon algorithm (RH).

In the implementation of CON, the order in which products are selected for insertion 

is decided by using either random or heuristic rules. In this work, products are 

inserted in numerical order 1, 2, 3...n. During the improvement step (IMP), two 

products are randomly selected for release at each iteration (the number of products 

selected for release can be decided by the user, however in the authors’ personal 

experience keeping this number as low as possible is advised for reasonable solution 

times). The selection of an insertion approach for CON and the number of products 

to be released in the IMP step is based on user experience. For convergence of the 

IMP step, the criterion SU  = 50 is used in all example problems.

We also compare our algorithm with an iterative algorithm (RH) based on the 

concept of rolling horizons (Pinedo, 2002). The full-space, two-stage programming 

model is solved iteratively, whereby at each iteration, i, only a subset of T  time 

periods, t, is solved. In the first iteration, i, the subproblem is solved for (i (T-l) ) 

time periods, and the binary variables for (i (T-l) + 1 - T) are fixed. The algorithm 

proceeds in this manner until all time periods, t, have been solved. The number of 

time periods in the subset, T, can be chosen by the decision maker (whereby the 

larger the value of T  the longer the solution time and the higher the likelihood of an 

achieved solution being optimal). Figure 4.1 shows a diagrammatic representation of 

the algorithm. A value of T = 3 is used in all example problems.

- 79-



Chapter 4. Medium Term Planning o f Biopharmaceutical Manufacture using Two-Stage Programming

RH algorithm, where T =

tl t2
Fixed

tl t2 t3 t4 Optimised

tl t2 t3 t4 t5 t6

Figure 4.1: Iterations, i: 1 - 3 o f the rolling horizon algorithm (RH), where t is the number of 

time periods to be solvedfor and T is the subset o f time periods.

Monte Carlo (MC) simulation is used in order to better quantify the impact of 

variability on the deterministic schedules, as well as for the validation of the quality 

of solution schedules and thus the realistic expected performance. A number of 

simulation loops are setup in GAMS post model solution to create an improved 

approximation of the probability distribution assumed for uncertain parameter rp. 

This presents an opportunity for the validation of the accuracy of the discrete 

probability distribution used in the mathematical programming model. Subsequent to 

the solution of each optimisation model the resulting scheduling decision variables 

YP, and Zpt are fixed and MC simulation is conducted for uncertain parameter rp. We 

compute the expected profit (MCPROF) until a convergence criterion is met. A 

minimum number of iterations are assumed, after which the standard error of the 

mean and an overall mean expected profit are computed at each iteration. When the 

standard error of the mean is less than 1% of the overall mean profit, the mean output 

value is considered to have converged (Hung et a l , 2006).

The data used in the Monte-Carlo simulation assumes a mean of rp and a standard 

deviation of unc*rp where unc is a fractional value which signifies a symmetrical 

deviation representing the variability from the mean. For the two-stage programming 

model, three discrete outcomes (low, medium and high) are assumed and their 

equivalent probabilities are derived by truncation of a standard normal distribution
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with mean ?p and standard deviation unc*rp, by +/- 1 a and the results are shown in 

Figure 4.2.

Probability of Production Rate Outcome 
27.3% 45.4% 27.3%

(1-imc) *rp rp (1+unc) *rp
Production Rate Outcome

Figure 4.2: Equivalent discrete probability distribution o f production rate rp, where unc is

the variability in rP

All problems were implemented in GAMS (Brooke et a l, 1998) using the CPLEX 

MILP solver, solving all problems to optimality. All runs were performed on a 1.8 

GHz Pentium 4 PC with 512 MB RAM.

4.5.1. Example Problem Data

The sizes of each o f the three examples tackled are shown below:

• Example 1: three products, nine time periods (1.5 year production time horizon).

• Example 2: five products, ten time periods (1.7 year production time horizon).

• Example 3: ten products, eighteen time periods (3 year production time horizon).

Table 4.1: Demand profile for Example 1 *

Product Time Period

1 2 3 4 5 6 7 8 9

PI 3 2

P2 3 5

P3 2 5

♦Note: A ll demands are in number o f  batches
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Table 4.2: Demand profile for Example 2*

Product Time Period

1 2 3 4 5 6 7 8 9 10

PI 2

P2 3

P3 2 2 2

P4 2 3 2

P5 3

*Note: All demands are in number o f  batches

Table 4.3: Demand profile for Example 3*

Time Period
Product -----------------------------------------------------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
__ _

P2 3

P3 2

P4 2 3

P5 2 3

P6 3 4

P7 3

P8 3

P9 2

P10 3

*Note: All demands are in number o f  batches

The data associated with Examples 1 to 3 are presented below.

• A multiproduct facility producing p  mammalian-cell-derived products is 

assumed, with one, two or three product orders for each product.

• A production horizon between 1.5 and 3 years long, split into t time periods each 

two months long, i.e. the production time horizon H (, is 61 days long.

• The due date and demand profiles are shown in Tables 4.1 to 4.3. Orders were

assumed to be due at the end of each two month time period t. Early delivery is 

assumed to be infeasible and late deliveries are penalised for each late period.

• Production rates, lead times and related parameters used in Examples 1 to 3 are

shown in Table 4.4. Example 1 is assumed to include, P1-P3, Example 2, P1-P5, 

Example 3, P I-PI 0.
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• All lead times ap are in “days” and are each assumed to include seven days of 

product changeover related cleaning time.

Table 4.4: Parameters used in Examples 1-3, 1: P1-P3, 2: P1-P5, & 3: P1-P10

Product Parameter data Sales price and Costs

r p

(batches/

day)

a  p 

(days)

-pmm

(days)

Price/Cost Symbol Unit Value

PI 0.05 30 20 Product Cp time periods 3

lifetime,

P2 0.0909 28 11

Storage C p batch/day 6

P3 0.0625 32 16 Capacity,

P4 0.05 30 20 Sales price, U p rmu/batch 10

P5 0.08 31 12.5

Manufacturing % rm u/batch 4

P6 0.05 30 20 cost

P7 0.0909 28 11 Storage cost P p rmu/batch 0.2

P8 0.08 31 12.5

Late penalty 5 P rmu/batch 4

P9 0.05 30 20

P10 0.0909 28 11 Changeover V p rmu/batch 2

cost

4.5.2. Example Problem Results

All three examples were solved using DET, FULL, CON, CON/IMP and RH at 10% 

and 20% production rate rp variability and the computational results are shown in 

Table 4.5, while Figure 4.3 shows graphical representations of the achieved expected 

profits (MCPROF). A discussion on the impact of uncertainty, solution quality and 

solution times follows.
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Table 4.5: Computational results for Examples 1-3*.

Computational Optimisation Monte-Carlo

Results Simulation

Indicator OBJ CPU MCPROF

% variability fo r  rp 10 20 10 20 10 20

DET 108.5 108.5 1 1 98.7 94.2

FULL 105.7 105.7 34 15 105.8 101.1

CON/ 105.5 105.5 1 1 105.7 101.1
Example 1

CON/IMP 105.8 105.8 20 15 105.8 101.1

RH 105.7 105.7 10 7 105.8 101.1

DET 109.5 109.5 1 1 93.9 84.8

FULL 110.7 99.3 1330 2203 100.3 89.0

CON 109.6 102.6 2 2 94.0 85.1
Example 2

CON/IMP 104.9 100.4 28 26 100.3 89.4

RH 105.3 98.3 98 202 100.3 87.3

DET 195.6 195.6 2.9 3.0 179.2 152.6

FULL - - - - - -

CON 193.8 195.8 8 8 183.7 155.3
Example 3

CON/IMP 195 195 40 39 191.7 168.2

RH - - - - - -
*Note: Optimisation objective function (OBJ), Solution time in seconds (CPU) and Monte-Carlo simulation 

objective function (MCPROF); for results from DET (Deterministic model), FULL (the full space multiscenario 

problem), CON (the construction step), CON/IMP (Iterative construction/improvement algorithm) and RH 

(Rolling horizon algorithm).

The impact of uncertainty on operating profits is calculated as the percentage 

difference between the achieved profit in the absence of uncertainty and that 

achieved when introducing uncertainty via MC simulation. We calculate the impact 

for Examples 1, 2 & 3 to be a 9, 14 and 8% drop and a 13, 22 and 22% drop for the 

respective variabilities o f 10 and 20%. This shows a significant negative impact on 

profits which increases with increasing variability and provides strong motivation 

and support for methods aiding decision-making under uncertainty in the 

biopharmaceutical industry. Table 4.6 shows the percentage improvement in solution 

quality o f FULL, CON, IMP and RH over that achieved by the deterministic model.
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Figure 4.3: Graphical representations o f achieved expected profits (MCPROF) for examples 

1, 2, 3 and 4 using DET (deterministic model), FULL (the full space multiscenario problem), 

CON (the construction step), CON/IMP (Iterative construction/improvement algorithm) and 

RH (Rolling horizon algorithm), where ♦ represents 10% variability and m represents 20%

variability.
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Table 4.6 Percentage improvement in expected profit over the deterministic model solution

for Examples 1-3*.

% variability fo r  r„ 10 20
FULL 7.2 7.3

Example 1 CON 7.1 7.3

CON/IMP 7.2 7.3
RH 7.2 7.3

FULL 6.8 5.0

CON 0.1 0.4Example 2
CON/IMP 6.8 5.4

RH 6.8 2.9

FULL

CON 2.5 1.8Example 3
CON/IMP

RH
7.0 10.2

DET (Deterministic model), FULL (the full space 

multiscenario problem), CON (the construction step),

CON/IMP (Iterative construction/improvement algorithm) and 

RH (Rolling horizon algorithm).

FULL is able to able to solve Examples 1 and 2 to optimality but the projected 

exponential increase in problem size and hence solution time leads to the machine 

running out of memory and no solution being returned for Example 3 (1.8 GHz 

Pentium 4 PC with 512 MB RAM). Table 4.7 shows the number of scenarios 

generated in the full space multiscenario problem in each of the examples. While RH 

is able to make a considerable reduction in the computational requirements for 

Examples 1 and 2, the reduction in problem size achieved by the algorithm is not 

sufficient to obtain a solution for Example 3 as the exponential increase in problem 

size again proves too challenging for the hardware employed.

Table 4.7: Exponential relationship between the number o f products and number o f 

scenarios in the fu ll space multiscenario problem (FULL).

Example Number of Products,/; Number of Scenarios, k

1 3 27

2 5 243

3 10 59049
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CON achieved differing degrees of improvement over DET throughout each of the 

three examples tackled in particularly modest timescales never exceeding 8 seconds. 

The CON/IMP algorithm is able to match the optimal solutions of both FULL and 

RH in Examples 1 and 2, while making considerable savings in solution time over 

FULL. In Example 3 both CON and CON/IMP are able to achieve considerable 

improvements over DET where both FULL and RH fail to achieve a solution. The 

solutions achieved by both CON and CON/IMP for Example 3 are all achieved 

within modest timescales never exceeding 40 seconds. The increase in solution time 

seen by CON/IMP is much closer to linear than exponential demonstrating its 

effectiveness for tackling larger and more computationally challenging problems.

The two-step iterative algorithm CON/IMP shows that by using step 1 CON, 

improved solutions can be achieved within particularly modest timescales (<8s), 

while step 2 IMP can make further improvements and is able to match solutions 

achieved by solving the full space problem within still relatively modest timescales 

(<32s). Considering the size of the largest example tackled, this demonstrates the 

exceptional reduction in problem size achieved by CON/IMP and value of this 

approach for two-stage programming problems. This method is envisaged to be of 

value in other applications of two-stage programming.

4.6. Conclusions

In this chapter, a mathematical optimisation-based framework for medium term 

biopharmaceutical manufacturing planning under uncertainty has been presented, and 

tested on three illustrative examples of different size and at different variabilities. 

The problems were all solved using a deterministic model (DET), the full-space two- 

stage programming model, a two-step rolling horizon algorithm (RH) and the 

proposed construction/improvement algorithm (CON/IMP). The impact of 

uncertainty on the solution schedules was quantified for both examples via Monte 

Carlo (MC) simulation. The results showed that CON/IMP consistently matched the 

results of FULL and RH while improving on DET for small and more modest sized

- 87-



Chapter 4. Medium Term Planning o f Biopharmaceutical Manufacture using Two-Stage Programming

examples (1 and 2). While in the larger more challenging example (3) where both 

FULL and RH failed to achieve any solution, CON/IMP is still able to achieve 

considerable improvement on DET in particularly modest solution times.

4.7. Nomenclature

Indices

P product

t ,0 time periods

0 outcomes

k scenarios

Parameters

Cp storage capacity of product p, batches

Dpt demand of product p  at time period t

fpk production rate of product p , batches per unit time in scenario k

Ht available production time horizon over time period t

rp max 
1 P maximum production time for product p

rpmin
1 P minimum production time for product p

(Xp lead time for production of first batch of product p

Cp life time of product p, number of time periods t

Vp unit sales price for each batch of product p

Vp unit cost for each batch produced of product p
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yjp unit cost for each new campaign of product p

Sp unit cost charged as penalty for each late batch of product p

Pp unit cost for each stored batch of product p

SU  numbers o f iteration with no change to Ypt during improvement phase

unc fractional deviation from the mean

Binary Variables

Yp' 1 if  product p  is produced over period t; 0 otherwise

Zpt 1 if a new campaign of product p  is started in period t; 0 otherwise

Continuous Variables

Iptk amount of product p  stored over period t in scenario h

Eprof expected operating profit

Sptk amount of product p  which is sold over period t in scenario k

Tptk production time for product p  at time period t in scenario k

T tottk total production time over period t in scenario k

Wptk amount of product p  wasted over period t in scenario k

Aptk amount of product p  which is late over period t in scenario k

Integer Variables

Bptk amount of product produced over period t in scenario k
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Chapter 5

Medium Term Planning of 
Biopharmaceutical Manufacture 

using Chance Constrained 
Programming

5.1. Introduction

In the previous chapter, a two-stage programming approach for medium term 

planning of biopharmaceutical manufacture was presented using a mathematical 

programming formulation which determines the optimal production plans for a 

biopharmaceutical facility given uncertain fermentation titres. The overall problem 

was formulated as a two-stage MILP model based on discrete scenarios and an 

iterative algorithm was developed for its efficient solution.

The two-stage programming approach was compared to the deterministic model 

which demonstrated the value of decision-making under uncertainty in production 

planning of biopharmaceutical manufacture. The two-stage programming approach 

was also compared with the full space multiscenario model and a rolling horizon
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algorithm where it was able to match or improve on both approaches in each of the 

example problems considered. The iterative algorithm presented was able to reduce 

considerably the computational burden associated with two-stage programming 

approaches. However, there are more ideal approaches for planning under 

uncertainty which can provide an alternative to multiscenario type representations 

and their associated computational burden.

In this chapter an alternative optimisation-based framework for medium term 

planning of biopharmaceutical manufacture given uncertain fermentation titres will 

be presented. This optimisation framework is also based on the deterministic medium 

term planning model presented earlier (Section 3.2) and leverages the concepts of 

chance constrained programming to represent the uncertain conditions. A compact 

mathematical formulation for medium term planning under uncertainty is presented 

and compared with the results from the deterministic formulation as well as the two- 

stage programming approach (CON/IMP) presented in the previous chapter (Sections 

4.2 & 4.3). The results from four illustrative examples are presented.

5.2. Problem Description

As was discussed in Chapter 4, when tackling optimisation problems under 

uncertainty, parameters assumed to be uncertain are often represented by discrete 

outcomes using a multiscenario stochastic (two-stage) programming approach. Using 

a multiscenario approach and assuming between 3 and 10 products were to be 

produced, and with three possible outcomes for uncertain parameter rp, resulted in 

between 27 and 59,049 possible scenarios (product/outcome combinations). Given 

that each scenario must be explicitly incorporated in the objective function, this 

exponential growth means that for larger examples solving the full space 

multiscenario model becomes computationally intractable. Practically the approach 

often adopted is to solve problems suboptimally by specially developed solution 

procedures such as that presented in Section (4.3).
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Chance constrained programming (CCP) provides an alternative approach which 

avoids the multiscenario representation. Further discussion on the CCP methodology 

and the derivation o f the problem formulation follows in the next section.

5.3. Mathematical Formulation

The formulation presented here is based on the deterministic medium term planning 

problem presented in Section 3.2, however again here the focus is shifted to tackling 

the impact o f uncertainty. The deterministic formulation will first be presented and 

will be followed by the stochastic formulation.

5.3.1. Deterministic Formulation

The multiperiod MILP model composed of an objective function and constraints is 

formulated for the representation and solution of the biopharmaceutical production 

planning problem as shown below.

5.3.1.1. Production Constraints

Constraint (1) represents biopharmaceutical production. The number of batches 

produced, Bpt, an integer variable, is calculated through production rate, rp, which is 

combined with production lead time, ap. This lead time allows for the duration of the 

first batch o f a campaign plus the set-up and cleaning time before the first batch is 

started. Production time, Tpt, shows the duration of manufacture of each product p  

within each time period t. The logical incorporation of lead time is enforced by a 

binary variable Zpt. If a product p  is selected for manufacture at time t a lead time, ap, 

will only be included in that campaign duration to account for the setup and cleaning 

if Zpt is equal to 1 (denoting the start of a new campaign).

Bp t = z p t + r p ( Tp t - a p z pt)  0 )
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Binary variable Yph is introduced to denote whether or not a product p  is 

manufactured at time t. In order to enforce the correct activation of binary variable 

Zph constraint (2) is introduced. It enforces that Zpt will only be activated if product p  

is not manufactured in the previous time period t - l , i.e. it is the start of a new 

campaign.

z Pt ^ YPt ~ YP,t-1 V/?,* (2)

In order for the production constraints to capture accurately the campaign 

changeover considerations, constraint (3) is introduced to ensure that at most one 

product p  undergoes manufacturing at any given time period t.

Vf (3)
P

5.3.1.2. Timing Constraints

In some cases, manufacturers enforce minimum and/or maximum campaign lengths 

in order to maximise efficiency or to allow for relevant maintenance/slack. 

Constraints (4) and (5) represent the appropriate minimum and maximum production 

time constraints, where Tpmin is the minimum campaign duration, Tpmax is the 

maximum campaign duration and Ht is the size of the time horizon. These constraints 

are only active if  Ypt is equal to 1, otherwise the production times are forced to 0.

T f* Y p t <Tpt Vp,t (4)

Tpl H , y pl Vp.t (5)

5.3.1.3. Storage Constraints

The following constraint enforces an inventory balance for production and forces 

production to meet demand. In constraint (6) the amount of product p  stored at the 

end of the time period, Ipt, is equal to the amount stored at the previous time period, 

IPtt.u plus the net amount produced during the current time period, Bpt, less the 

amount sold, Sph and the amount of product wasted, Wpt in the current time period.
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I  pt Ip ,t- l+Bpt Spt Wpt V p ,t (6)

Constraint (7) enforces that the amount of product p  stored over period t cannot be 

negative and should not exceed the maximum available product storage capacity, Cp.

0 < Ip t <Cp vp ,t (7)

In constraint (8) stored product is constrained by limited product lifetimes, whereby 

any product stored during time period t cannot be sold after the next Cp time periods.

1  pt  ~  V p , t  (8 )
0 = t+1

5.3.1.4. Backlog Constraints

To ensure that late batches are eventually produced a penalty is incurred for every 

time period t that a given batch of product p  is late. For a given product p  at time t 

the number of late batches, Apt is equal to the number of undelivered batches from 

the previous time period t-l, APit.j plus demand at time t, Dpt less the sales at time t, 

Spt. Late penalties are avoided by the penalty’s minimisation in the objective 

function.

A Pt = A Pt-\ + D Pt ~  s Pt Vp> * (9)

5.3.1.5. Objective Function

The strategic objective in this formulation is to maximise operating profit. This is 

represented by an objective function which is considered to be the difference 

between “total sales” with each batch sold at a price vp, and “total operating costs” 

which include the batch manufacturing cost at rjp per batch, changeover cost at y/p per 

batch, storage cost at pp per batch and late delivery penalties of Sp per batch. All costs 

and prices are in relative monetary units (rmu).

Prof = ^  ~VpBpt~ Vp^pt~Pplpt~5p&pt) (10)
p  t
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The complete deterministic formulation [DET] is a MILP model comprising 

constraints (1- 10). The following section derives the stochastic formulation.

5.3.2. Stochastic Formulation

In this particular formulation the fermentation titres are considered to be uncertain as 

discussed in Section 5.1. They are captured as fluctuations in the production rate, rp, 

through the proposed CCP model.

The CCP approach aims to satisfy constraints with a specified probability or 

confidence level and provide the optimal solution at that confidence level (Chames 

and Cooper, 1959). This requires the decision maker to express a risk tolerance, in 

terms of a permissible probability of constraint violation which can be represented by 

a corresponding inverse cumulative distribution factor known as the critical K 

value, . For the efficient solution of the problem formulation, the deterministic

equivalent formulation must be derived. Deterministic equivalent formulations of 

chance constraints can be derived using traditional probability theory concepts (Taha, 

2003). The case of uncertain production rates is now considered.

5.3.2.1. Uncertain Production Rates

Consider the previous production constraint (1) from section 5.2.1.1 shown below.

where rp is an uncertain parameter with mean /u(rp) and standard deviation o{rp).

In order to set up the chance constraint, it must first be converted into an inequality. 

In a planning problem where production is maximised the logical replacement of the 

“equality” sign =, is the “less than or equal to” sign <, as production Bpt is maximised 

in order to satisfy demand.

Bpt ~~ Zpt + rp (Tpt otpZ pt) Vp,/ (1)

Bpt — Zpt + rp (Tpt a  pZ pt ) 0 1 )

Formulating this as a chance constraint:
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P r ^ ,  < Zpt +rp (Tpt - a pZ p,))> A (12)

where A, is a minimum prespecified probability that constraint (12) will hold true. 

The feasibility o f constraint (12) is a “good” event as this ensures the correct number 

of batches are produced, hence A should be large (> 50%).

Rearranging constraint (12):

M BPt ~ z p i ^ rP(Tpt - a p z Pt ) ) s  A (13)

Subtracting the mean of uncertain parameter yu(rp (Tpt - apZpt)) and dividing both sides 

of constraint (13) by the standard deviation o{rp (Tpt - apZpt)).

Pr B P t ~ z p t - M ^ p i T p t  - a p z p t ) )  ^ r p ( T p t  - < X p Z p t ) - f J - ( r p ( T p t  ~ a p z p t ) )  

a {rp (Tpt -  ocpZ pt)) ” ^ p P p t  ~ a pz pt))
> A

(14)

Call the right-hand side o f the inequality Kp̂Tpl apf pt̂  T̂f>L\ apZpt ̂ , h.
°\rp(Tpt ~aPz pt))

Pr BPt ~ z pt - a pZpt))
<r(rp {Tpt-apZpt))

> A (15)

Rearranging constraint (15):

1-Pr h<
B  p t  z  p t  / ^ ( r p  p t  a  p Z  p t ) )

°{rp(rpt - a pZpt))
> A (16)

Pr h<
Bp t  Z p t  M ^ p i T p t  a p ^ p S )‘- p t  r* \ ’ p \ * p t

<r{rp(T p t-a pZpt))
< 1 -  A (17)

Assuming the left-hand side of the inequality h, is a stable normally distributed 

variable with a mean o f 0 and a variance of 1, the chance constraint (17) can be 

replaced by constraint (18), where <f>, is the standardised normal cumulative 

distribution function.
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0f  Bpt ~ z pt -f^TpiTpt -  <XpZpt))A
v a irp ̂ p t a pZpt)) j

< 1 -  A (18)

Applying the inverse o f the standardised normal cumulative distribution function to 

constraint (18):

Bp, -  Z - d t p V p '-  < 0,-Vl -  A) (19)
Gyp^Tpt a pZpt))

Rearranging constraint (19), we get:

Bpt ^ z pt + W rp) + ° _1(1 -  A).cr{rp)\Tpt -  a pZpt) (20)

Finally, it follows naturally that 0 _1(1-A) is equal to - 0 _1(A). Hence in the chance 

constrained programming formulation, constraint (21) below becomes the new 

production constraint replacing constraint (1):

BPt ^ Z p t+[^{rp )-<&-'(A).(T{rp ))j'p t - a p Z pt) (21)

The complete deterministic equivalent formulation [CCP] becomes a MILP model 

comprising constraints (2 -  10) & (21). The following section illustrates the use of 

the proposed formulation through some illustrative examples.

5.4. Illustrative Examples

Four examples are solved to illustrate the applicability of the proposed CCP 

approach. All examples are solved assuming the production rate, rp is uncertain. For 

sensitivity purposes the examples are solved for two different variabilities, +/- 10% 

and +/- 20% variability in the production rate, rp. The results achieved using the CCP 

approach are compared with those achieved by the deterministic model (DET) 

presented in Section 5.2.1 which assumes mean values for the uncertain parameter rp,
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and the two-stage programming approach (CON/IMP) presented in Sections 4.2 and

4.3.

Similarly to Chapter 4, Monte Carlo (MC) simulation was used to conduct a 

stochastic analysis for each of the examples solved in order to better quantify the 

impact o f variability on the deterministic schedules, as well as for the validation of 

the quality of solution schedules and thus the realistic expected performance. 

Subsequent to the solution of each optimisation model the resulting scheduling 

decision variables Ypt and Zpt are fixed and a MC analysis is conducted for uncertain 

parameter rp and the expected profit (MCPROF) is computed. The convergence 

criteria for the MC simulation is a standard error of the mean of 1%.

The data used in the chance constrained programming approach assumes a mean of 

rp and a standard deviation of unc*rp where unc is a fractional value which signifies a 

symmetrical deviation representing the variability from the mean. For the two-stage 

multiscenario model three discrete outcomes are assumed and their equivalent 

probabilities are derived by truncation of a standard normal distribution with mean rp 

and standard deviation unc*rp, by +/- 1 o and the results are shown in Figure 5.1.

Probabilitv of Production Rate Outcome
27.3% 45.4% 27.3%

(1 -unc)* rp rp 

Production Rate Outcome

(1 +unc)* rp

Figure 5.1: Equivalent discrete probability distribution of production rate rp, where unc is

the variability in rp

The confidence level of chance constraint feasibility for A is assumed to be 90% 

which in standard normal distribution tables (Ott and Mendenhall, 1990) corresponds 

to a critical K value of 1.282. All problems were implemented in GAMS
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(Brooke et al., 1998) using the CPLEX MILP solver, solving all problems to

optimality. All runs were performed on a 1.8 GHz Pentium 4 PC with 512 MB RAM.

5.4.1. Example Problem Data

The sizes of each o f the four examples tackled are shown below:

• Example 1: three products, nine time periods (1.5 year production time horizon).

• Example 2: five products, ten time periods (1.7 year production time horizon).

• Example 3: seven products, twelve time periods (2 year production time horizon).

• Example 4: ten products, eighteen time periods (3 year production time horizon).

The data associated with Examples 1 to 4 are presented below.

• A multiproduct facility producing p  mammalian-cell-derived products is 

assumed, with one, two or three product orders for each product.

• A production horizon between 1.5 and 3 years long, split into t time periods each 

two months long, i.e. the production time horizon Ht, is 61 days long.

• The due date and demand profiles are shown in Tables 5.1 to 5.4. Orders were 

assumed to be due at the end of each two month time period t. Early delivery is 

assumed to be infeasible and late deliveries are penalised for each late period.

• Production rates, lead times and related parameters used in Examples 1 to 4 are 

shown in Table 5.5. Example 1 is assumed to include, P1-P3, Example 2, P1-P5, 

Example 3, P1-P7, and Example 4, PI-PI 0.

• All lead times ap are in “days” and are each assumed to include seven days of 

product changeover related cleaning time.
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Table 5.1: Demand profile for Example 1 *

Product Time Period

i 2 3 4 5 6 7 8 9

PI 3 2

P2 3 5

P3 2 5

*Note: All demands are in number o f  batches

Table 5.2: Demand profile for Example 2*

Product Time Period

1 2 3 4 5 6 7 8 9 10

PI 2

P2 3

P3 2 2 2

P4 2 3 2

P5 3

♦Note: All demands are in number o f  batches

Table 5.3: Demand profile for Example 3 *

Product Time Period

1  2 3 4 5 6  7 8 9 10 U  12_ _ _

P2 4

P3 2

P4 2 3

P5 2

P6  3 3

P7 3

♦Note: All demands are in number o f  batches
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Table 5.4: Demand profile for Example 4*

Time Period 
Product ------------------ --

1 2 3 4 5 6  7 8  9 10 11 12 13 14 15 16 17 18

PI ~ 4
P2 3

P3 2

P4 2 3

P5 2 3

P6  3 4

P7 3

P8 3

P9 2

P10 3

*Note: All demands are in number o f  batches

Table 5.5: Parameters used in Examples 1-4, 1: P1-P3, 2: P1-P5, 3: P1-P7 & 4: P1-P10

Product

Parameter data Sales price and Costs

r p

(batches/

day)

a  p 

(days)

'pmm

(days)

Price/Cost Symbol Unit Value

PI 0.05 30 2 0 Product Cp time periods 3

lifetime,

P2 0.0909 28 11

Storage C p batch/day 6

P3 0.0625 32 16 Capacity,

P4 0.05 30 2 0 Sales price, v p rmu/batch 1 0

P5 0.08 31 12.5

Manufacturing h P rmu/batch 4

P6 0.05 30 2 0 cost

P7 0.0909 28 11 Storage cost P p rmu/batch 0 . 2

P8 0.08 31 12.5

Late penalty 8 P rmu/batch 4

P9 0.05 30 2 0

P10 0.0909 28 11 Changeover V P rmu/batch 2

cost
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5.4.2. Example Problem Results

All four examples were solved using DET, CCP and CON/IMP at 10% and 20% 

production rate rp variability and the computational results are shown in Table 5.6, 

while Figure 5.2 shows graphical representations of the achieved expected profits 

(MCPROF). A discussion on the impact of uncertainty, solution quality and solution 

times follows below.
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Figure 5.2: Graphical representations o f achieved expected profits (MCPROF) for Examples 

1, 2, 3 and 4 using DET (deterministic model), CCP (Chance constrained programming 

approach) and CON/IMP (Iterative construction/improvement algorithm), where ♦ 

represents 10% variability and m represents 20% variability.
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As was seen in Chapter 4 (which included Examples 1, 2 and 4 from this chapter) 

there is a considerable negative impact on operating profits when not accounting for 

uncertainty. The CCP approach is able to make considerable improvements on the 

deterministic model in each of the four examples. The achieved percentage 

improvement on the deterministic model by the CCP and the CON/IMP algorithm 

can be seen in Table 5.7.

Table 5.6: Computational results for Examples 1-4*.

Computational Optimisation Monte-Carlo

Results (CPU: in seconds) Simulation

Indicator OBJ CPU MCPROF

% variability fo r  rp 10 20 10 20 10 20

DET 108.5 108.5 1 1 98.7 94.2

Example 1 CCP 106.7 96.7 1 1 106.9 102.9

CON/IMP 105.8 105.8 19 14 105.8 101.1

DET 109.5 109.5 1 1- 93.9 84.8

Example 2 CCP 102.9 76.9 1 3 100.9 93.8

CON/IMP 104.9 100.4 26 24 100.3 89.4

DET 135.7 135.7 1.3 1.3 110.8 98.5

Example 3 CCP 114.3 114.3 1 1 121.4 109.9

CON/IMP 135.8 131.2 18 17 114.4 102.1

DET 195.6 195.6 2.9 3.0 179.2 152.6

Example 4 CCP 193.6 171.8 4.3 18.8 191.6 168.0

CON/IMP 195 195 32 31 191.7 168.2

*Note: Optimisation objective function (OBJ), Solution time in seconds (CPU) and Monte-Carlo 

simulation objective function (MCPROF); for results from DET (Deterministic model), CCP (Chance 

constrained programming approach) and CON/IMP (Iterative construction/improvement algorithm).

The CCP approach is found to make considerable improvements over the 

deterministic model as can be seen graphically in Figure 5.2 or numerically in Table 

5.7. Across all examples the CCP approach makes improvements of between 6.9% 

and 10.6%. In all examples the higher variability scenario of 20% results in greater 

improvements in solution quality and hence higher potential monetary savings. The 

consistency and quality of the improvements can be attributed to improved 

scheduling decisions and hence more timely satisfaction of demands. Timely demand
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satisfaction reduces the lateness penalties which have the greatest impact on the 

objective function. In the case of CCP a combination of improved scheduling 

decisions and improved capacity utilisation leads to more timely demand satisfaction 

and lower productions costs, leading to an even greater improvement in profits.

Table 5.1: Percentage improvement in expected profit over the deterministic model solution

for Examples 1-4*.

% variability fo r rp 10 20

Example 1 CCP 8.3 9.2

CCP 7.5 10.6
Example 2

CON/IMP 6.8 5.4

CCP 9.6 11.6
Example 3

CON/IMP 3.2 3.7

CCP 6.9 10.1
Example 4

CON/IMP 7.0 10.2

CCP (Chance constrained programming approach) and 

CON/IMP (Iterative construction/improvement algorithm).

The CCP approach consistently improves on or matches the CON/IMP algorithm. 

CCP achieves up to 300% relative improvement over the solution quality achieved 

by the CON/IMP algorithm. However, the value of the CCP approach is not only in 

the improved performance o f solution quality under the impact of uncertainty but 

also in the negligible increase in CPU time that is traditionally a cumbersome feature 

of typical multiscenario, stochastic programming models. When compared directly to 

the CON/IMP algorithm from a solution time perspective, CCP generally 

outperforms the algorithm, given that the CCP approach does not employ the 

scenario index k  and hence generates a model size almost identical to that generated 

by the deterministic approach. In the largest example, Example 4, the number of 

scenarios that would be generated by a full-scale multiscenario representation 

assuming three discrete outcomes would be greater than 5.9 x lCf4 scenarios, which 

would be difficult to solve in any reasonable timescale with conventional computer 

hardware. The computational requirements in all examples and variability scenarios 

are reasonable. The CPU times achieved by the CCP approach are generally of a
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similar order o f magnitude as those achieved by the deterministic model, with the 

longest CPU time for CCP being less than 19 seconds. Considering the size of the 

largest example solved, this demonstrates the exceptional computational efficiency 

of the proposed CCP approach.

5.5. Conclusions

In this chapter, a mathematical optimisation-based framework for medium term 

biopharmaceutical manufacturing planning under uncertainty has been presented, and 

tested on four illustrative examples of different size and at different variabilities. The 

problems were all solved using a deterministic model (DET), a two-stage 

programming model accompanied by an iterative construction algorithm (CON/IMP) 

and the proposed chance constrained programming approach (CCP). The results of 

the MC analysis showed that CCP consistently improved on the results of DET in 

terms of profitability. While when compared with the CON/IMP algorithm the CCP 

approach was able to match or improve on it in terms of both solution quality and 

computational time.

5.6. Nomenclature

Indices

p  product

t, 0 time periods

Parameters

C p storage capacity of product p , batches

D pt demand of product p  at time period t

r production rate of product p, batches per unit time
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H t available production time horizon over time period t

rp max  
1 P maximum production time for product p

rpmin
1 P minimum production time for product p

(X p lead time for production of first batch of product p

Cp life time o f product p, number of time periods t

V p unit sales price for each batch of product p

n P unit cost for each batch produced of product p

v P unit cost for each new campaign of product p

s p unit cost charged as penalty for each late batch of product p

Pp unit cost for each stored batch of product p

P(rp) the mean value of production rate and is equivalent to rp

o(rP) the standard deviation of production rate rp

0 1 inverse o f the standardised normal cumulative distribution function

Binary Variables

Y P« 1 if  product p  is produced over period t\ 0 otherwise

Z  pt 1 if  a new campaign of product p  is started in period t; 0 otherwise

Continuous Variables

I  pt amount of product p  stored over period t

Prof operating profit

s pt amount o f product p  which is sold over period t

T Pt production time for product p  at time period t
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T tott total production time over period t

Wpt amount o f product p  wasted over period t

A pt amount o f product p  which is late over period t

Integer Variables

Bpt amount o f product produced over period t
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Chapter 6

Multiobjective Long Term Planning 
of Biopharmaceutical Manufacturing

F acilities

6.1. Introduction

In the previous Chapters (3-5), approaches for medium term planning of 

biopharmaceutical manufacture were presented, whereby the focus was production 

planning o f a single biopharmaceutical facility. Both deterministic and stochastic 

approaches were developed. However the models did not account for longer term 

strategic objectives, where multiple facilities are often considered simultaneously. As 

an increasing number o f large-scale biopharmaceutical companies have a portfolio of 

commercial products on the market as well as a pipeline of candidates under clinical 

evaluation, developing a comprehensive manufacturing strategy to meet anticipated 

demands for both clinical trial and market material requires careful capacity 

planning. Consequently, more effective methods are required to manage and align 

production across several multiproduct facilities, including third party organisations, 

so as to ensure the availability of sufficient capacity. However, determining capacity 

needs for biopharmaceutical production is often a difficult process requiring

- 108-



Chapter 6. M ultiobjective Long Term Planning o f  Biopharmaceutical Manufacturing Facilities

predictions o f product doses, market forecasts, production rates (titres, yields) and 

clinical/technical success rates.

Hence in this chapter we consider the issue o f long term production planning in the 

biopharmaceutical industry. The work in this chapter is motivated by an industrial 

case study based upon a large-scale biopharmaceutical manufacturer who wishes to 

improve their long term planning decisions and to explore the impact of different 

strategic decision making policies. We present an MILP formulation for the long 

term production planning o f biopharmaceutical manufacture and later extend it via a 

goal programming formulation to account for multiple objectives. The industrial case 

study is solved and analysed to demonstrate the applicability of the model and 

highlight some o f  the key challenges within strategic decision-making in the 

biopharmaceutical industry.

6.2. Problem Features

The biopharmaceutical supply chain is comprised of two main stages much like that 

of the pharmaceutical industry, namely primary (or bulk) manufacture which 

involves the production of the active ingredient and secondary manufacture which 

involves formulation and packaging. The focus of this chapter is on manufacturing 

production planning across a network o f facilities to satisfy bulk product demands. 

The key features of the problem particularly those highlighted in this work are 

discussed below.

6.2.1. Plant Capacity

For a good estimate o f a manufacturer’s capacity availability and requirements the 

key features of biopharmaceutical manufacturing must be captured. These features 

include the long production lead times encountered and the level of time granularity 

used for the planning horizon. This should be sufficiently fine to mimic the 

“campaign” style manufacture often adopted in the biopharmaceutical industry, 

which is typically 2 to 3 months per campaign. A manufacturer often uses owned
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facilities and/or contractors with differing manufacturing rates, yields, production 

capabilities and availabilities. These need to be represented explicitly and are often 

based on forecasted yields and product success rates.

6.2.2. Product Storage

Product instability and hence shelflife is an important and often costly feature of 

biopharmaceuticals. Products are often frozen via specialised storage methods such 

as cryopreservation offering manufacturers increased flexibility for scheduling and 

planning (Wilkins et al., 2001). Shelflife is of great significance to the effective 

management o f inventory given that some products are required in very small doses 

but produced in larger bulk orders (economies of scale) requiring products to be held 

to meet future order dates.

6.2.3. Product Pricing, Demand and Backlog

Product pricing is established through research with physicians, patients, payers, and 

advocacy groups and are also impacted by a drug’s uniqueness, competitive pricing 

strategies and socio-political factors (Snow et al., 2005). Meeting product demand in 

the biopharmaceutical industry is a highly sensitive issue due to the high value of the 

products involved. Mallik (2002) estimates that the lack of manufacturing capacity 

for Immunex’s highly successful arthritis drug Enbrel cost the company more than 

$200 million in lost revenue in 2001, while Shah (2004) notes that Eli Lilly’s 20% 

drop in net profits coincided with Prozac coming off patent. Hence companies must 

therefore strive to capture every day of revenue generation by ensuring an adequate 

supply of product. Penalties should ensure that late deliveries are made as soon as 

possible. If demands are unmet by their order dates, backlog of demand should be 

captured to ensure that demands are met as soon as possible. However, typically the 

importance o f satisfying backlogged orders decays with time as new orders take 

precedence.
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6.2.4. Strategic and Operational Objectives

There are many possible strategic and operational objectives for a biopharmaceutical 

manufacturer as there are many different stakeholders and both internal and external 

pressures. Hence the strategic decision making policies a manufacturer adopts are 

likely to have varying consequences on different performance measures. Even 

though the livelihood o f a business is inevitably governed through the maximisation 

of its shareholder value, there are many constraints to meeting this long term goal. 

Possible objectives include maximising profit, maximising sales, maximising 

customer service level, minimising costs, and minimising risk to name but a few. 

Other objectives are to meet targets such as satisfying fixed cost or capacity 

utilisation targets and hence might not be expressed as outright maximisation or 

minimisation problems.

We first consider a common single objective problem where operating profits are 

maximised, followed by a multi-objective problem where the three objectives 

considered are: operating costs, customer service level and capacity utilisation of 

owned facilities. Operating cost targets are usually dictated either by budget 

constraints or a drive to be more cost-effective. Customer service levels may also be 

set as strategic targets to ensure that customer demand is met on time. Another 

important issue from an operational perspective is plant capacity utilisation; Mallik 

(2002) estimated that in a typical new mammalian cell-culture facility revenues 

would be boosted by $380M by a 25% increase in plant utilisation. Manufacturers 

often have strategic capacity utilisation targets for their owned facilities (adjusted for 

market uncertainty and manufacturing risks), in order to ensure high utilisation of 

their facilities and hence minimise facility carrying costs (idle facility costs) and the 

need for outsourced capacity. Another feature incorporated here is manufacturing 

risk, whereby it is defined as the risk of a manufacturing facility outage due to 

unforeseen circumstances such as a contractor manufacturer dispute or natural 

disaster.
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6.3. Problem Statement

The problem of long term planning of biopharmaceutical manufacture may be stated 

as follows.

Given:

• A set of facilities.

• A set o f products.

• A production time horizon.

• Production rates, yields and lead times.

• Product lifetimes and storage capacities.

• Product demands and sales prices.

• Backlog decay factor.

• Manufacturing, changeover, storage costs and late delivery penalties.

• Minimum and maximum campaign durations.

• Goal Target values and weights for: Cost, service level and capacity utilisation.

Determine:

• Campaign durations and sequence of campaigns.

• Production quantities along with inventory profiles.

• Product sales and late deliveries profile.

• Achieved goal levels vs. aspired goal targets.

So as to
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• Maximise manufacturing profits (Single objective problem).

• Minimise the total adverse deviations from the selected goal targets 

(Multiobjective problem).

6.4. Mathematical Formulation

The formulation presented here is based on the work presented earlier (Section 3.2) 

where we tackled a deterministic medium term planning problem. Here the focus is 

shifted to longer term planning allowing for multiple facilities. A single objective 

formulation is presented first, before moving to a goal programming extension to 

allow for multiple objectives.

6.4.1. Long Term Planning Formulation

An index i denoting facility is introduced to the formulation presented earlier 

(Section 3.2) to allow for multiple facilities. This manufacturing representation is 

more akin to a multisuite configuration than that of a multisite one with 

geographically distinct sites as features such as transportation costs and differing 

taxation regions are not considered. Subsets are introduced for facility manufacturing 

capability, PIt the set o f  products produced by facility i and for facility availability, 

product manufacturing capability, IPp the set of facilities that can produce product p  

T f the set o f time periods in which facility i is available for use.

6.4.1.1. Production Constraints

Constraint (1) represents biopharmaceutical production. The number of batches 

produced in facility i o f  product p  at time period t, Bipt, an integer variable, is 

represented by a continuous production rate, rip, which is combined with production 

lead time, aip. This allows for the duration of the first batch of a campaign plus the 

set-up and cleaning time before the first batch is started. Production time, Tiph shows 

the duration of manufacture in facility i of product p  at time period t. Incorporation
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of lead time is enforced by a binary variable Zipt. If a facility i is selected to 

manufacture a product p  at time t a lead time, aip, will only be included in that 

campaign duration to account for the setup and cleaning if Zipt is equal to 1 (denoting 

the start of a new upstream/downstream campaign). Constraint (2) is introduced for 

the conversion o f the integer number of batches produced, Bipt, into kilograms, Kipt, 

via a yield conversion factor, ydiP, specific to every product p  and facility i. (This 

differs for different facilities even for the same product as it allows for different 

batch sizes and product titres).

Bipt = Z ipt + nP (Tipt ~ a ipZ ipt) \ f i ,p  e PIt ,t e 77f (1)

K iPt = B ipt y d ip V i > e  PIt , t e 77; (2)

Binary variable Yiph is introduced to denote whether or not a facility i is used to 

manufacture a product p  at time t. In order to enforce the relevant production lead 

times constraint (3) is introduced. It enforces that Zipt in constraint (1) will only be 

activated if  product p  is not manufactured at a facility i in the previous time period t- 

1, i.e. it is the start o f a new campaign upstream.

z iPt ^  YiPi -  YiP,i-\ V ‘>pe p i i ’( e n i (3)

In order for the production constraints to capture the required campaign changeover 

considerations, constraint (4) ensures that at most one product p  undergoes 

manufacturing in any given facility i at any given time period t.

Y / ‘P‘ - X V i J e T f ,  (4)
pzPli

6.4.1.2. Timing Constraints

In some cases, manufacturers enforce minimum and/or maximum campaign lengths 

in order to maximise efficiency or to allow for relevant maintenance/slack. 

Constraints (5) and (6) represent the appropriate minimum and maximum production 

time constraints, where Tipmin is the minimum campaign duration, Tipmax is the
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maximum campaign duration and Ht is the size of the time horizon. These constraints 

are only active if  Yipt is equal to 1, otherwise the production times are forced to 0.

Tb * Yipt ^  TiPt VUp e PIi9t g 77; (5)

Tip, ^  m i n ^ ax, H, \ ipt Mi, p<EPIi>te TIt (6)

Constraint (7) shows the facility production time, Tfittot for all products is equal to the 

summation o f the individual production times for each product p.

rpr tot rp

J i t  -  2 ^  ip1 Vi , fe77f (7)
p z P f

6.4.1.3. Storage Constraints

The following constraint enforces an inventory balance for production and forces 

total production to meet product demand. In constraint (8) the amount of product p  

stored at the end o f the time period Ipt, is equal to the amount at the previous time 

period Ipt.\, plus the total number o f batches produced during the time period for all 

products across all facilities i, B ipt, less the amount sold, Spt, and the amount of 

product wasted, Wpt in the current time period t.

Ipt = Ip,t-1 + ̂ K ipt -  s pt -  Wpt Vp e PI I , t e 77,- (8)
i

Constraint (9) enforces that the amount of product p  stored over period t cannot be 

negative and should not exceed the maximum product storage capacity, Cp. While 

constraint (10) enforces that the sum of the total inventory held at any given time t 

cannot exceed the global storage capacity CPtot.

0 <Ipt<Cp V p f  (9)

0 < ' Y J I p , ± C P ,0‘ M t ( 10)

P
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In constraint (11), the duration a product is stored for (shelf-life) is limited by 

product-lifetimes. It effectively ensures that final product is sold in less than fp time 

periods from when it is first stored.

Ipt-zl,spe vp,t ( l l )
0=t+1

6.4.1.4. Backlog Constraints

To ensure that late batches are eventually produced a penalty is incurred for every 

time period t that a given batch of product p  is late. For a given product p  at time t 

the number o f late batches, Apt is equal to the number of undelivered batches from 

the previous time period t- 1 multiplied by a factor np which allows for the backlog to 

decay (due to the diminishing importance o f the backlogged orders), KpAp_t.i plus 

demand at time t, Dpt less the sales at time /, Spt. Late penalties are avoided by the 

penalty’s minimisation in the objective function.

V  = V V - i + zV _ 5 p ' (12>

6.4.1.5. Risk Constraints

The risk of a facility outage due to an unforeseen circumstance such as a natural 

disaster or a dispute with a contract manufacturer or any other circumstance must be 

mitigated. A facility should be enforced to meet demands by producing a given 

product in at least two different facilities where possible. In some cases product 

demands may be too small or only one facility may be capable of producing a 

particular product. In such cases products to be constrained are included in a subset, 

RS, the set o f  products which should be manufactured in at least two different 

facilities.

A new set is introduced, TBb the set of time periods in a time block b. This allows the 

specification o f a time window in which to enforce products to be manufactured 

more than once. A new binary variable Yipb ew which is activated if  a facility i is used 

to manufacture a product p  within a time block b. Constraint (13) enforces any
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product belonging to the set RS to be produced in at least two different facilities i 

within any time block b. Constraint (14) relates YiPbnew to binary variable Yipt while 

production time Tipt is related through constraints (5) and (6).

y n e w  r y

•r‘>* - z \ /p e R S ,b  (13)I
ieIPp

X V 'b. vnew
2 ^  ipt ~ ipb V/ e IPp ,p  e RS,b (14)

teTBb n77f

6.4.1.6. Objective Function

The objective function “maximise profit” is represented here and is considered to be 

the difference between “total sales” with each batch sold at a price vp, and “total 

operating costs” which include the batch manufacturing cost at rjp per batch, 

changeover cost at yip per batch, storage cost at pp per batch and late delivery 

penalties o f Sp per batch. All costs and prices are in relative monetary units (rmu).

[Model SINGLE]

Maximise

Prof = ̂  ^  \vpfipt —pptpt —Sp/lpt~^  'jkpftipt+ySjffijpt)) (15)
p  teTli iIPp

Subject to: constraints (1 -  14).

The complete formulation SINGLE encompassing equations ( 1 - 1 5 )  corresponds to 

a mixed-integer linear programming (MILP) model.

6.4.2. Goal Programming Formulation

Here we consider the case of multiple objectives. Many methodologies have been 

proposed for treating multiobjective optimisation problems (Miettinen, 1999). A 

general review o f the application of multiobjective optimisation in chemical
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engineering is presented by Bhaskar et al. (2000). A number of multiobjective 

optimisation methods have been applied to supply chain and strategic planning 

problems, including Life-Cycle Assessment (LCA) (ISO, 1997) which is a 

quantitative environmental performance tool, based around mass and energy 

balances but applied to a complete economic system rather than a single process. 

Azapagic and Clift (1999) applied LCA across supply chains to improve 

environmental performance, by generating Pareto fronts and trading off economic 

performance. The s-constraint method (Haimes et al., 1971) is based on the 

maximisation of one objective function while considering the other objectives as 

constraints bounded by some allowable levels eo. Then, the levels so may be altered 

to generate the entire Pareto-optimal set. Sabri and Beamon (2000) presented a 

multiobjective supply chain optimisation model which employed the s-constraint 

method for the simultaneous strategic and operational supply chain planning. 

Multiobjective decision analysis was adopted to allow the use of a performance 

measurement system that included cost, customer service levels, and flexibility 

(volume or delivery). The model incorporated production, delivery, and demand 

uncertainty, and aimed to provide a multiobjective performance vector for the entire 

supply chain network. Guillen et a l  (2005) combined the s-constraint method with a 

two stage programming model to tackle the problem of design and retrofit of a 

supply chain network consisting of several production plants, warehouses and 

markets, and the associated distribution systems. The authors considered profit, 

demand satisfaction and financial risk allowing for uncertainty in demand, and 

generated a Pareto set o f solutions to aid the decision maker. Another commonly 

utilised approach in tackling multiobjective optimisation problems is goal- 

programming (Chames and Cooper, 1961) which is a generalisation of linear 

programming to handle multiple, normally conflicting objective measures. Each of 

these measures is given a goal or target value to be achieved. Unwanted deviations 

from this set o f target values are then minimised as an achievement function. Zhou et 

al. (2000) presented a multiobjective optimisation framework in which goal 

programming and the analytic hierarchy process, a multiobjective decision making 

method used to evaluate the priorities of goals and weights of deviation variables, 

were combined to tackle the issue o f sustainability in supply chain optimisation and
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scheduling of a petrochemical complex. Multiple objectives including social, 

economic, resources and environmental sustainability; some of which were 

conflicting, were considered.

Each of the multi objective optimisation methods considered above is based on the 

conversion o f a vector o f objectives into a scalar objective. Given that optimisation 

of a multiobjective problem is a procedure looking for a compromise policy, the 

resulting Pareto-optimal or noninferior solution set consists of an infinite number of 

options. In order to be able to suggest a specific point within this set, some attempts 

have been made to compare the objectives between them, for example optimising a 

Nash-type function (Gjerdrum et al., 2001), defining the objectives as fuzzy sets 

(Chen et al., 2003) or adding the consideration of the decision-maker input in the 

problem formulation Rodera et al. (2002).

A goal programming approach has been adopted so as to demonstrate the trade-offs 

between selected objectives for the following reasons: 1) goal programming does not 

dramatically increase the problem complexity/size, 2) no specific conditions are 

required to achieve the solutions, and 3) goal-programming is simple, since it 

transforms the multi objective problem into a single-objective optimisation problem. 

There are several types o f goal programming formulations (lexicographic, minimax, 

weighted, extended & interval). Tamiz et al. (1995) noted that lexicographic and 

weighted goal programming represented 85% of goal programming applications in 

the literature. Lexicographic goal programming was found to be too computationally 

intensive given the size o f the problem considered in this work. Hence, weighted 

goal programming (WGP) is the method presented, whereby the normalised 

unwanted deviations are assigned weights according to their relative importance to 

the decision-maker and minimised as an Archimedean sum (sum up to 1).

Here, three different goals, g, are considered: cost, service level (csl) and capacity 

utilisation (util). Three key variables are introduced to relate the goals and aid their 

attainment: the goal target for each goal g, GTg, the goal level of each goal g, GLg, 

and the goal difference/deviation for each goal g, GDg dev. The deviation dev can be 

positive, pos, or negative, neg, whereby both GDgi p 0S, and GDg> neg, are positive 

variables. The goal difference GDg> dev is equivalent to the absolute difference
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(differential) between the aspired goal target GTgj and the achieved goal level GLg, 

for each goal, g.

6.4.2.1. Operating Costs

Constraint (16) shows the cost goal which is defined as the total operating costs for 

all facilities, whereby the goal level for cost, GLcost is equal to the summation of the 

inventory, late delivery penalties, manufacturing costs, and changeover costs. This 

should be minimised to at least meet its aspired target level, GTC0St-

6.4.2.2. Customer Service Level

Constraint (17) shows the customer service level (CSL) goal which is defined as the 

proportion o f the demand which is met on the due date. This is a similar concept to 

OTIF (on time and in full) (Gjerdrum et al., 2001). Constraint (18) shows the CSL 

goal level, which is given as a percentage for each time period t, GLTcsi t and is equal 

to the difference between the total sales minus any backlogged batches as a 

proportion o f the total demand. A subset D T  is introduced and represents the set of 

time periods in which product demands are due.

G L  cost ^  ^  ' ( P p l p t  +  d p & p t ) +  ^  ' ( fl ipBipt ^ W j p ’L jp t ) (16)
p<=PI' t e T f  V y

g l t csK, = , o o * X Spt ^p,t-1
(17)V t e D T

p

T cL T csi,t

card(DT)
(18)

6.4.2.3. Capacity Utilisation

Constraint (19) shows the capacity utilisation goal which is defined as the utilisation 

of available manufacturing time for each facility. Constraint (20) shows the capacity
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utilisation goal level which is given as a percentage for each facility i, GLIutm and is 

equal to the total manufacturing time for each facility, Tfittot, divided by the total 

available manufacturing time for each facility, where A[ is a scalar denoting the 

proportion o f the time horizon that facility z is available.

100* >  T f‘°'

G U  ~ , c a r d lA, W  <19>

A subset OS is introduced and represents the set of facilities which are owned by the 

manufacturer and hence are required to meet strategic capacity utilisation targets. As 

shown in constraint (20) the goal level for capacity utilisation, GLutii, is equal to the 

average capacity utilisation over all owned facilities. This should be minimised or 

maximised to meet its aspired target level, GTutn, exactly.

T G U u tU j
G Lutil= i^ -----------  (20)

uM card {OS) V '

6.4.2.4. Normalisation Constraints

Constraint (21) and (22) represent normalisation constraints for the goals and the 

goal deviations respectively, whereby each goal is normalised to 100. Goal levels, 

GLg and goal deviations, GDgdev are multiplied by 100 and divided by the goal 

targets GTg. Normalisation is often desirable for the unbiased optimisation of goals 

of different magnitudes, meaning that the optimisation bias is completely transferred 

to the decision maker via the specification of goal weights.

GL„ *100G L norm =  g   y  (2 1 )
g  G T  &

GD„dev *100
GZ)“ ™v= — — ------- Vg.rfev (22)
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Constraint (23) represents the goal balance, where the normalised goal level for each 

goal, plus the negative and positive goal differences for each goal are equal to 100.

GLngorm + GD ng°™ -  GD"g°™ = 100 G D ™  GD™™ > 0, Vg (23)

6.4.2.5. Objective Function

The objective function for the multiobjective optimisation problem (MULTI) is the 

minimisation o f the weighted sum of the normalised deviations from all goal target 

values and is shown below, where WTgidev is the weight of each goal deviation.

[Model MULTI]

Minimise

Sumd= Z Z ^ - G^ ™  (24)
g  dev

Subject to: constraints (1-14 & 16-23).

The complete formulation MULTI encompassing equations (1-14 & 16-24) also 

corresponds to a mixed-integer linear programming (MILP) model. The applicability 

of the model will now be demonstrated via an industrial case-study.

6.5. Industrial Case-Study

As an example o f an industrial application, a case study based on a real-life planning 

problem facing a large-scale biopharmaceutical manufacturer is presented. This 

represents a typical capacity management problem in the biopharmaceutical industry, 

whereby a manufacturer has a mix of owned and contract manufacturing facilities 

available to them and must decide how to best utilise this capacity. A number of 

studies are presented based on the industrial case data and an analysis is conducted 

with relevant insights drawn.
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First the problem data is presented, followed by a demand analysis and a 

quantification o f the impact o f allowing for manufacturing risk through the activation 

of the risk constraint. A capacity analysis is then conducted in order to establish the 

manufacturer’s capacity needs. Finally the multi objective problem is presented, 

whereby different operating policies and cost target levels are investigated and 

discussed.

6.5.1. Problem Data

This problem presents a challenging long term planning problem in the 

biopharmaceutical industry, whereby a manufacturer needs to decide how to best 

utilise ten manufacturing facilities for the production of fifteen biopharmaceutical 

products, over a fifteen-year time horizon. The problem definition and associated 

data are given below:

• Ten manufacturing facilities (il -  ilO), of which il, i4, i6 and i9 are owned 

facilities while the rest are CMO, producing fifteen biopharmaceutical products 

(p l-pl5).

• A fifteen year time horizon is assumed from 2006 -  2020, with 60 time periods t 

each three months long, i.e. the production time horizon H t, is 87 days long 

(discounting 5% for maintenance time).

• The due date and demand profiles are shown in Table 6.1. Orders are assumed to 

be due at the end year, i.e. every four time periods. Early delivery is assumed to 

be infeasible.

• Table 6.2 shows the facility capabilities. All facilities are assumed to be available 

throughout the time horizon, apart from facility 6 (i6) which is unavailable until, 

2007 (t5), and facility 9 (i9) which is unavailable until 2016 (t41). Minimum and 

maximum campaign durations are assumed to be 0 and 87 respectively.

• Production rates, manufacturing yields and manufacturing costs are shown in 

tables 6.3, 6.4 and 6.5 respectively. All remaining parameters are shown in Table 

6 .6 .
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Table 6.1: Product demands for industrial case study

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Pi 21 32 18 28 61 104 153 156 164 63 161 162 162 163 165
p2 6 5 4 4 4 3 3 3 3 3 3 3 2 2 2
P3 12 43 38 5 22 52 97 132 133 135 137 118 109 100 90
p4 583 628 655 687 758 921 989 941 993 649 621 573 521 468 421
p5 12 12 11 10 9 7 6 5 4 3 2 2 2 2 3
p6 211 200 245 246 257 266 284 274 226 180 166 151 137 123 110
P7 4 5 5 7 6 5 8 9 8 9 7 7 6 5 5
p8 5 5 5 7 6 5 8 9 8 9 7 7 6 5 5
p9 15 15 15 13 12 9 8 6 5 4 3 3 2 2 2
plO 72 99 104 102 111 120 130 139 188 120 106 93 81 69 58
p ll 552 615 699 737 743 733 684 572 518 471 424 381 342 307 274
p!2 5 5 5 7 6 5 8 9 8 9 7 7 6 5 5
pl 3 211 252 290 298 286 216 169 153 150 145 110 100 93 84 102
pl4 2 2 4 3 3 3 16 11 13 16 16 16 16 17 17
pi 5 4 4 5 6 16 11 24 32 37 40 41 42 42 43 44
Note: All demands are in kilograms

Table 6.2: Facility capability fo r  industrial case study

Pi p2 p3 p4 p5 p6 p7 p8 p9 plO pH pl 2 pl 3 pH pl 5
il Yes Yes No Yes No Yes No Yes Yes Yes Yes Yes No Yes Yes
i2 Yes No No Yes No Yes No Yes No Yes Yes No Yes Yes Yes
i3 No No No No No No No No No No No No Yes No No
i4 No No No Yes No No No No No No No No No No No
i5 No No No Yes No No No Yes No Yes Yes No No Yes Yes
i6 No No No Yes No No No Yes No Yes Yes No No Yes Yes
il No No No No No No Yes No No Yes No No No No No
i8 No No Yes No Yes No No No No No No No No No No
i9 Yes No No Yes No Yes No No No Yes Yes No No Yes Yes
ilO Yes Yes No Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Yes
Note: il, i4, i6 and i9 are owned facilities

Table 6.3: Production rates fo r industrial case study

Pi P2 p3 p4 p5 p6 P7 p8 p9 plO P ll P12 pl 3 p 14 pl5
il 0.35 0.39 0 0.45 0 0.29 0 0.35 0.25 0.39 0.41 0.39 0 0.12 0.35
i2 0.6 0 0 0.61 0 0.6 0 0.6 0 0.43 0.56 0 0.6 0.6 0.6

i3 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0
i4 0 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0

i5 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45

i6 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45

il 0 0 0 0 0 0 0.45 0 0 0.45 0 0 0 0 0

i8 0 0 0.58 0 0.45 0 0 0 0 0 0 0 0 0 0

i9 0.45 0 0 0.45 0 0.45 0 0 0 0.45 0.45 0 0 0.45 0.49

ilO 0.45 0.45 0 0.45 0 0.45 0 0.45 0.45 0.45 0.49 0.45 0.45 0.45 0.45

Note: All rates are in batch/day and il, i4, i6 and i9 are owned facilities
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Table 6.4: Manufacturing yields for industrial case study

P l p 2 p3 p 4 P5 p 6 p 7 p 8 p9 plO p l l p l 2 p l3 p l4 p l  5
i l 1 0 1 0 8 0 6 0 1 0 2 9 7 1 0 1 2 1 2

i2 9 0 0 8 0 6 0 9 0 8 1 0 0 1 0 1 2 11

i3 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0

i4 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0

i5 0 0 0 1 0 0 0 0 1 0 0 8 8 0 0 11 11

i6 0 0 0 1 2 0 0 0 1 0 0 8 17 0 0 17 14
i7 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

i8 0 0 3 6 0 1 0 0 0 0 0 0 0 0 0 0 0

i9 1 0 0 0 1 2 0 5 0 0 0 8 16 0 0 1 2 13
ilO 9 1 0 1 2 0 5 0 1 0 2 8 14 1 1 0 1 2 1 2

Note: All yields are in kilograms/batch and i l ,  i4, i6 and i9 are owned facilities

Table 6.5: Manufacturing costs fo r industrial case study

P l p 2 p3 p 4 p5 p 6 P7 p 8 p9 plO p l l p l  2 p l  3 p 14 p l 5

i l 1 1 0 1 0 0 3 0 1 1 1 3 1 0 1 1

i2 1 0 0 0 5 0 2 0 5 0 1 0 2 0 2 5 2

i3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

i4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

i5 0 0 0 2 0 0 0 0 2 0 0 2 0 2 0 0 0 5 2 0

i6 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0

i7 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

i 8 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0

i9 1 0 0 0 1 0 0 1 0 0 0 0 1 0 8 0 0 1 1 0

ilO 15 15 0 15 0 15 0 15 15 15 15 15 15 15 15

Note: All costs are in rmu ’s and i l ,  i4, i6 and i9 are owned facilities

Table 6.6: Parameter data fo r  industrial case study

Price/Cost Unit Value

Production lead time days 14

Product lifetime tim e periods 8

Sales price rm u/batch 2 0

Storage cost rm u/batch 0 . 1

Lateness penalty rm u/batch 0 . 1

Changeover cost rm u/batch 2

Backlog decay u n itless 0 .5
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6.5.2. Demand Analysis and Risk Constraint Impact

The industrial case is formulated using the single objective model detailed in Section

4.1 and using the data shown above the “base case” problem is solved. The base case 

is solved twice, with and without the risk constraint activated, whereby the set of 

products that can be produced in more than one facility and are seen to be of 

considerable strategic importance includes p l, p4, p6, plO, p l l  and pl3. This is 

repeated for two other demand scenarios, low demand (50% of the base case 

demand) and high demand (150% of the base case demand).

The computational results and key performance measures are shown in Table 6.7, 

and include: total product demand (kg), total product sales (rmu), total operating 

costs (rmu), total profit (rmu), customer service level (CSL) which is the percentage 

of batches which are met on time, average utilisation (UTIL) of owned sites, and 

sales to demand ratio (S/D) which is the proportion of total demand that is met by the 

end of the fifteen year time horizon.

In the base case the risk constraint is found to result in a 2.7 % increase in operating 

costs due to the extra operating costs (changeover and manufacturing) incurred as a 

result of the additional campaigns required in order to satisfy the risk constraint. The 

impact on sales, profit, CSL and S/D equate to around a 1.5 % drop. This represents 

the operational cost o f the “piece of mind” that is gained through the dual facility 

production, as this hedges against facility outages throughout the time horizon by 

offering cost and time saving flexibility, for example, in the case of a last minute 

production plan reconfiguration. The impact of the risk constraint is seen to be 

considerably lower in the sales, cost, profit, CSL and S/D measures (one order of 

magnitude) in the low demand scenario and considerably higher in the high demand 

scenario (approximately 5 fold), as a result of the respective excess and lack of 

manufacturing capacity. This leads to the conclusion that the decision whether to 

enforce the risk constraint is restricted by the level of expected product demand. For 

example, in the case o f the low and base demand scenarios allowing for risk would 

likely be acceptable as the impact may well be seen to be negligible from a cost- 

benefit perspective. While in the case of the higher demand this would be
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unacceptable as the 77.9% expected CSL would probably seem too much of a 

sacrifice given the 10.6% drop from the 87.1% expected CSL.

The changing customer service levels as compared with the total base case demand 

over time are shown for each scenario in Figure 6.1. The most noticeable feature of 

Figure 6.1 is that o f the low CSL in both the high demand scenarios (Figure 6.1a (A ) 

- without risk and Figure 6.1b (A ) - with risk). Until the year 2016 the CSL is well 

below 95% which can be explained by the trend in total demand shown in Figure 

6.1c. It is also noted that in the “with risk” scenario all CSL’s are lower than in that 

of the “without risk” scenario most notably in the high demand scenario.

Figure 6.2 shows the capacity utilisation for each facility for each of the demand 

scenarios that results in the maximum profit. Facilities i l ,  i4, i6 and i9 are the most 

well utilised facilities in each of the demand scenarios which can be explained by the 

lower cost o f manufacturing. Facilities i7 and i8 (both contract manufacturers) are 

not well utilised mainly due to the fact that they each can only make 2 products in the 

portfolio, which each have relatively low demands. Given the higher costs associated 

with securing CMO capacity, these results highlight that the time booked with these 

CMOs should be renegotiated to avoid paying for idle capacity.

Table 6.7: Performance measures at each demand scenario and the impact o f the risk 

constraint fo r the industrial case study

Demand Sales Cost Profit CSL UTIL S/D

(kg) (rmu) (rmu) (rmu) (% ) (% )

Low 5 .9 4 x lO J 1 .1 9 x l0 4 3 .0 9 x 1 0 2 1 .1 6 x l0 4 99 .8 6 2 .3 0 .9 9

Low/risk 5 .9 4 x l 0 3 I . l 9 x l 0 4 3.1 lx lO 2 1.16 x  1 0 4 9 9 .7 6 3 .5 0 .9 9

%Difference 0 -0 .1 0.3 -0.1 -0.1 1.9 -0.1

Base 1 .1 9 x l0 3 2 .3 7 x l 0 4 1 .0 0 x l 0 J 2 .2 7 x l0 4 99 .3 8 6 .4 0 .9 9

Base/risk 1 .1 9 x  1 0 3 2 .3 4 x l 0 4 1 .0 3 x l0 3 2 .3 3 x l0 4 9 7 .7 8 5 .4 0 .9 8

%Difference 0 -  l J 2.7 - 1.4 - 1.6 - 1.2 -1.2

High 1 .7 8 x lO J 3 .1 7 x l 0 4 1 .5 6 x lO j 3 .0 2 x 1 0 4 87.1 9 6 .2 0 .8 9

High/risk 1 .7 8 x l 0 3 2 .9 9 x 1 0 4 1 .4 1 x l0 3 2 .8 4 x l0 4 7 7 .9 95 .3 0 .8 4

%Difference 0 -5 .9 9.8 -5 .7 -10.6 -1 .0 -6.0
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Figure 6.1: Customer service level for the low (+), base (x) and high (A ) demand scenarios 

without (a) & with (b) the risk constraint activated, (c) shows the total base case demand for

comparison.
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Figure 6.2: Capacity utilisation for each facility for the low (+), base (x) and high (A) 

demand scenarios without (a) & with (b) the risk constraint activated. Owned facilities are

il, i4, i6 and i9.
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6.5.3. Capacity Analysis

Based on the analysis conducted in the previous section (5.2) we assume that 

allowing for risk in the problem formulation is a sensible strategy. Hence for the 

remainder o f this work the risk constraint will remain activated allowing for 

manufacturing risk.

Figure 6.1b shows the base case with risk (designated by x) and is now considered 

more closely in order to determine more specifically the capacity needs and likely 

capacity management decisions in this scenario. The CSL base demand scenario 

curve shows that from 2006 to 2015 the CSL hovers between 90% and 100%. Figure 

6.3 shows a more detailed view of the CSL between 2006 and 2015 for each of the 

individual products. Although CSL of 90-100% is high, a closer look at the CSL for 

each product reveals that p2, p8. p9, p l2 , p l4  and p l5  are not being frilly satisfied. 

This indicates that there is insufficient capacity to meet the demands of all the 

products. The fact that the optimisation results show some product demands met 

frilly and some not at all (i.e. p2 and p8) can be attributed to the mathematically 

driven nature o f the model whereby the manufacture of the product with the lowest 

costs and the highest volumes is maximised as this represents the most cost-effective 

use of capacity. Products required in low volumes (p2, p8, p9, p l2 , p l4  and pl5) are 

avoided (or delayed) partially due to the size of the time slots (3 months), as a 

commitment o f 3 months to produce a small volume of product is inefficient. Table 

6.8 shows a more detailed view o f the CSL whereby the CSL for each product for 

each year is shown along with the facility that was used to meet the orders. This 

gives a better idea o f the capacity needs for a given product, more specifically how 

much is needed and when it is needed. The facility used to meet the orders may help 

manufacturers decide whether to boost existing capacity or produce elsewhere or 

whether contract capacity is being utilised sufficiently.
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p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 

P r o d u c t

Figure 6.3: Average customer service levels fo r  the individual products between 2006 and

2015.

Table 6.8: Actual customer service level fo r each product at each year between 2006 and

2015.

Y ear 2 0 0 6 2 0 0 7 2 0 0 8 2 0 0 9 2 0 1 0 2 0 1 1 2 0 1 2 2 0 1 3 2 0 1 4 2 015

p 2 0 0 0 0 0 0 0 0 0 0

p 8 0 0 0 0 0 0 0 0 0 0

p9 0 0 0 0 0 0 0 0 0 i l /  1 0 0

p ! 2 0 0 0 0 0 0 0 0 0 i l /  6 8 . 6

p l4 0 0 i6 /  1 0 0 i6 /  1 0 0 0 0 0 0 0 i5 / 100

p l5 0 0 0 0 0 0 i l /  1 0 0 i l / 1 0 0 i5 / 9 0 .9 i5 / 100

Note: i’s denote facilities where products for that order where produced.

6.5.4. The Im pact o f Multiple Objectives and Different 
Operating Policies

The model was adapted to a goal programming formulation as detailed in Section

4.2 to account for multiple objectives where deviations from target values of each 

objective were minimised. There are numerous policies which can be adopted to 

guide strategic planning decisions. In our study we assume that all policies have the 

same target levels for each o f the objectives namely the minimisation of costs to a 

target level o f 100,000 rm u’s, the maximisation of CSL to a target level of 100%, 

and the fulfilment o f  a capacity utilisation target of 90% for all owned facilities.
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Here, three different scenarios are adopted which differ in the relative importance set 

for each objective, and are explained below:

• Cost policy (COST): This policy is that of the cost-conscious decision-maker

who may have costs targets to meet and which cannot be exceeded under any

circumstances, irrelevant of the CSL achieved. An additional objective includes 

the need to meet set capacity utilisation targets. The weighting of the objectives 

COST:CSL:UTIL in this case is 7:1:2.

• CSL policy: This policy is that of the customer-conscious decision-maker who

feels that the maximisation of service levels is of such great importance that

exceeding cost targets to improve CSL is an acceptable sacrifice. An additional 

objective also includes the need to meet set capacity utilisation targets. The 

weighting o f the objectives COST.CSL.TJTIL in this case is 1:7:2.

• Compromise policy (COMP): This policy is that of the compromising decision­

maker who would like to meet each of the set goals equally and aims to satisfy 

cost targets while achieving high service levels and meeting utilisation targets. 

The weighting o f the objectives COST:CSL:UTIL in this case is 1:1:1.

Note that the utilisation objective is weighted as 2 in the cost and CSL policies as 

both the negative and positive deviations are penalised in the objective function, 

while in the cost policy only the positive deviation is penalised and in the CSL policy 

only the negative deviation is penalised.

Figure 6.4 shows the percentage deviation from the goal targets for each of the base 

case and each o f the operating policies and Figure 6.5 shows a plot of the operating 

costs and service levels for each of the policies. It should be noted that the highest 

deviation in cost and utilisation are attained in the base case, where the reason for 

this is that the base case is modelled using the single objective problem 

(maximisation o f profit) and does not directly attempt to meet these objectives. 

Analysis o f the three operating polices shows that the CSL policy followed by the 

COMP and COST policies achieves the highest service level. While both the COST 

and the COMP policies meet the costs target levels exactly, the CSL policy shows a
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slight deviation 0.5%. All policies sufficiently meet the utilisation target. In terms of 

profit there is no significant difference relative to the base case as the CSL policy 

matches the base case and the COST and COMP policies make only a 1% drop. 

Hence a high profit is still achieved while also satisfying key cost, CSL, and UTIL 

targets more closely.

Further computations were conducted for all policies at two additional cost target 

levels of 90,000 and 110,000 rmu in order to analyse the problem sensitivity. Figure 

6.6 shows the resulting plot of operating cost and service level. The aim in both 

Figures 6.5 and 6.6 is to lie as close to the bottom right hand comer of the graph as 

possible, signifying the lowest costs and highest service level. A similar trend can be 

seen at each o f the cost target levels whereby the CSL policy achieves the highest 

service level, followed by the COMP and COST policies and only the COMP and 

COST policies meet the required cost targets. The difference in performance is more 

evident as cost targets are tightened, reflecting the difficulty of achieving high 

service levels at lower costs. This observation motivated further sensitivity studies on 

the cost and service levels, which is conducted using the COMP policy by 

incrementally changing the cost target level and the associated plot is shown in 

Figure 6.7. This graph shows a clear trend of an increase in service level with an 

increase in cost up to a cost target o f 100,000 rmu’s, at which point service levels 

stagnate at around 98%. The further increase in cost without an increase in service 

level is attributed to the production o f orders of backlogged batches, which even 

though they are o f  lesser importance than new orders, contribute to cost through late 

penalties and hence are manufactured only if monetary resources are available.

Finally, while the optimisation framework presented can be used as a production 

planning tool, it is best used as a capacity analysis tool for aiding strategic 

manufacturing capacity related decisions. In reality demands would not all be due at 

the end o f the year, and better demands forecasts would likely be available as 

demand dates neared.
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Figure 6.4: Percentage deviation from each o f the cost (white), service level (grey) and 

utilisation (black) goals fo r  the base case, cost, customer service level and compromise 

operating policies and the profit (x) achieved by each policy.

103.500

103.000 

£  102,500 ^

S 102,000 \
<-> i

101.500 -j

| 101,000 Q_ 1
o

100.500

1 0 0 .0 0 0  L- 
96.8

+  B A S E

C S L

C O S T  C O M P *  +-----
9 7 .0  9 7 .2 9 7 .4  

C S L  (% )

9 7 .6 9 7 .8  9 8 0

Figure 6.5: Shows the operating cost and service levels for the base case, cost, customer 

service level and compromise operating policies.
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Figure 6.6: Operating cost and service levels fo r  the base case, cost, customer service level 
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6.6. Conclusions

An optimisation-based framework for long term planning of biopharmaceutical 

manufacture has been presented, and tested on an industrial case study. The problem 

was first solved as a single objective problem, where profit was maximised, and a 

capacity analysis was conducted to determine where additional capacity would be 

needed. The problem was then extended to allow for multiple objectives via goal 

programming, namely operating costs, customer service levels and capacity 

utilisation o f owned facilities. Three different operating policies were compared, 

namely a cost biased (COST), service level biased (CSL) and a compromising policy 

(COMP). CSL was found to outperform all polices in achieving the highest service 

level. Only the COST and COMP policies met cost targets with COMP achieving the 

higher service level o f the two approaches. Sensitivity studies were conducted on 

cost targets and showed a similar trend to that noted above, with the trend becoming 

more evident with lower cost targets. Further sensitivity analysis was conducted on 

the COMP scenario considering different cost targets and monitoring service levels 

which were found to increase with increasing operating costs and hence monetary 

resources eventually reaching a plateau. Capacity analysis of an industrial case study 

has been shown to give decision makers a better idea of what their existing capacity 

situation is and where it may need capacity increases or improvements. The approach 

has also been demonstrated to help evaluate different operating polices and quantify 

operational performance at different monetary resource levels.

6.7. Nomenclature

Indices

b timeblock

dev negative (neg) or positive (pos) goal deviation

g goals: cost, csl (customer service level), util (capacity utilisation)

- 135-



Chapter 6. M ultiobjective Long Term Planning o f  Biopharmaceutical Manufacturing Facilities

i facility

p  product

t, e time periods

Sets

D T set o f  time periods in which product demands are due.

IPP set o f  facilities i manufacturing product p.

OS set o f owned facilities.

Pit set o f products p  produced by facility i.

RS set o f product which must be produced in at least two differem

facilities.

TBb set o f time periods in a time block b.

Th set o f time periods t in which facility i is available for use.

Parameters

c ip storage capacity o f product p  at facility /, batches

P)pt demand o f product p  at time period t

GTg aspired goal target for goal g

r iP production rate o f product p  at facility i, batches per unit time

Ht available production time horizon over time period t

rp max 
J-ip maximum production time for product p

P  min
l i p minimum production time for product p

ydip yield conversion factor, kilograms per batch
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WTg,dev Archimedean weight of goal deviation

aip lead time for production o f first batch of product p  at facility i

CP life time o f product p , number o f time periods t

vp unit sales price for each batch of product p

rjp unit cost for each batch produced of product p

y/P unit cost for each new campaign of product p

dp unit cost charged as penalty for each late batch of product p

pp unit cost for each stored batch of product p

n rate o f backlog decay

Binary Variables

Yipt 1 if  product p  is produced over period t at facility i; 0 otherwise

YiPbnew product p  is produced over block b at facility /; 0 otherwise

Zipt 1 if  a new campaign of product p  at facility i is started in period t\ 0

otherwise.

Continuous Variables

l ipt amount o f product p  stored over period t at facility i

GDg> dev actual goal difference for each goal deviation

GDg dev°rm normalised goal difference for each goal deviation 

GLg achieved goal level for goal g

GLg0rm normalised goal level for goal g

GLTgt achieved goal level for goal g  at time period t
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GLIgi achieved goal level for goal g  at facility i

K ipt amount o f product p  produced over period t at facility i (kg)

Prof expected operating profit

Spt amount o f product p  which is sold over period t

Sumd sum o f adverse deviations

Tipt production time for product p  at time period t at facility i

Tfitot total production time over period t at facility i

Wpt amount o f product p  wasted over period t

Apt amount o f product p  which is late over period t

Integer Variables

Bipt amount o f product p  produced over period t at facility i (batches)
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Chapter 7

Commercial Considerations for the 
Development of a Software Tool for 

Production Planning of 
Biopharmaceutical Manufacture

7.1. Introduction

In this chapter, an implementation plan of a potential commercialisation route for the 

work generated in this EngD is presented. The development of the model, 

appropriate software architecture, implementation issues, estimated project resource 

requirements and potential benefits are discussed. The model implementation is 

based on a typical biopharmaceutical industry production planning problem, whereby 

a biopharmaceutical manufacturer wishes to optimise the production plans of a 

biomanufacturing facility or network of facilities using a hybrid 

simulation/optimisation approach.
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7.2. Model Development

The EngD project presented in this thesis was collaborative between UCL’s 

department o f Biochemical Engineering and BioPharm Services UK. Its objective is 

to provide biopharmaceutical manufacturers with an optimisation framework for the 

production planning o f multiproduct facilities. An intellectual property (IP) 

agreement for the rights to the resulting mathematical formulations was drawn up 

and agreed by all parties involved.

After considerable academic and industrial surveying in close collaboration with 

BioPharm Services UK, the project was defined. Over the subsequent four years, 

mathematical formulations along with algorithms for their solution were developed 

and tested on realistic example industrial problems. The results were presented at 

both national and international conferences.

7.3. Model Architecture

The first stage in taking the project from a theoretical mathematical formulation to a 

practical industrially applicable decision support tool is embedding the model in a 

practical/familiar software application infrastructure. The components of any 

potential system should include the following:

• A simulation package for the detailed formulation of problem features and 

graphical representation o f the results (e.g. Extend, Promodel).

• A database or spreadsheeting application for the specification of input parameters 

and a platform for the return o f generated results (e.g. Microsoft’s Access).

• A modelling environment for the specification of the mathematical optimisation 
model (e.g. GAMS or ILOG’s OPL development studio).

• An optimisation solver for the solution of the MILP models (CPLEX or 

XPRESS).
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The selected applications must have a compatible application programming interface 

(API) for software integration. An API is the interface that a computer system, 

library or application provides in order to allow requests for service to be made of it 

by other computer programs and to allow data to be exchanged between them. 

Relevant example API’s include: open database connectivity (ODBC), component 

object model (COM) and programming languages C and C++.

A detailed survey of commercial optimisation tools was conducted, and included an 

assessment of features, pricing information and interfacing capabilities. An 

assessment for tool selection and a solver comparison were also conducted 

(Appendix 1).

A diagrammatical representation of the required software infrastructure is shown in 

Figure 7.1 below.

Simulation Package 
(e.g. Extend)

Final
Solution

Database 
(e.g . A ccess)

Optimization Solver 
(e.g. CPLEX)

M odelling  
Environm ent 
(API) (e.g. GAMS)

Figure 7.1. A diagrammatic representation o f the information flow within the software

infrastructure.

An explanation o f steps 1 — 5 in Figure 7.1 is given below:

1. Once problem inputs (parameters) have been specified and appropriately set up in 

the database system, the data is imported by the modelling environment. The 

database communicates with the modelling environment via an API to set up the 

problem and perform the optimisation.
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2. A preformulated model with appropriate data import/export commands then 

accepts the input data and submits the problem with the relevant solution and 

display commands/conditions to the solver.

3. Upon solution termination/convergence (either by achieving required solution 

quality or exceeding allowable solution time) a solution is returned and sent to 

the database system for appropriate data manipulation.

4. The data is submitted to the simulation package for validation of the solution 

feasibility/quality, the simulation should be dynamically/programmatically 

scripted to match the problem.

5. The final solution output may be in the form of raw data to a database system for 

further manipulation and/or graphical interpretation via a Gantt chart, e.g. 

Microsoft PROJECT.

7.4. Project Implementation

An example implementation scenario is presented which involves a client (e.g. a 

large-scale biopharmaceutical manufacturer) who approaches a team of 

biopharmaceutical industry consultants for the development of a production planning 

tool.

A chronological implementation plan of the project’s key phases is presented and has 

a similar structure to a typical software development project as shown below:

7.4.1. Phase 1: User Requirements Analysis

• Client visit (1): Consultants visit client site to gain understanding of detailed user 

specifications.

• Timing: Create a project schedule.
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• Contracts: Establish a project contract covering key issues such as 

confidentiality, financials, delivery and penalties.

• Basic Functional Spec: A basic functional specification of the software is 

developed to meet the requirements o f the client.

7.4.2. Phase 2: System Design and Development

• Client visit (2): Consultants visit client site to qualify that the functional spec 

meets client requirements. Information and data collection.

• Full Functional Spec: A fully functional specification of the product is 

developed.

• Validation: Product is validated using historical data.

• Testing: product must conform to standard alpha and beta testing standards.

• Documentation: Appropriate product user manual/documentation must be 

developed and validated.

7.4.3. Phase 3: Operation and Maintenance

• Client visit (3): Deployment at client site: Handover o f product and installation at 

client site.

• Training: Users must be trained at client site.

• Maintenance: Agreements for appropriate maintenance at contract specification 

stage may or may not be included (Quality assurance guarantees).

7.4.4. Project Costing

Resource requirements and costs have been estimated based on a typical industrial

project, and presented for all phases o f implementation. An approximate project

costing was based on some assumptions as shown below:
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• Consultants conducting the work are charged at £50 per man hour and assumed 

to work a 40 hour week.

• We assume the consulting company conducting the work owns a copy of all 

necessary developmental software tools/licences. Hence client is charged for a 

copy of an end user (runtime) product licence and does not include annual 

maintenance or support fees.

• No mark up is included in the cost estimate as this will depend on the consulting 

company’s business strategy.

• A survey o f optimisation tools was conducted and aids the developer in gaining a 

better understanding o f available software capabilities. This was not charged.

• Table 7.1 shows the approximate project costing which totals £47, 980 and total 

project duration o f 20 weeks.

Table 7.1. Project costing and task durations.

All costs in UK pounds

Task Resource

(labour is calculated as man-weeks)

Cost (£ - British pounds)

Phase 1: User Requirements Analysis (Duration: 7 weeks)

C lien t v is it  (1 ) C o n su lta n ts  1 w e e k 2,000 +  1000  (exp en ses)

B a s ic  fu n ction a l sp e c M ic r o so ft  A c c e s s  (da tab ase) 130

B a sic  fun ctio n a l sp e c E x ten d  (s im u la tio n  p ack a g e) 50  (run tim e licen ce)

B a sic  fu n ctio n a l sp e c G A M S  (m o d e llin g  sy stem ) 1 ,600

B a sic  fu n ctio n a l sp e c X P R E S S  (so lv e r ) 3 ,2 0 0

B a sic  fu n ctio n a l sp e c G U I (ex tern a l co n su lta n ts 1 w eek ) 1,000
D ev e lo p m en t w o rk C o n su lta n ts  5 w e e k s 10,000
Phase 2: System design and development (Duration: 11 weeks)

C lien t v is it  (1 ) C o n su lta n ts  1 w eek 2,000 +  1 ,000  (exp en ses)

D ev e lo p m en t w ork C o n su lta n ts  8 w e e k s 1 6 ,0 0 0

D ocu m en ta tio n C o n su lta n ts  2  w eek s 4 ,0 0 0

Phase 3: Operation & M aintenance (Duration: 2 weeks)

C lien t v is it  (1 ) C o n su lta n ts  1 w e e k 2,000 +  1 ,000  (exp en ses)

T raining C o n su lta n ts  1 w e e k 2,000 +  1 ,000  (exp en ses)

TOTAL COST (Total duration: 20 weeks) 4 7 ,9 8 0
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7.5. Potential Benefits to Client

Manufacturers wishing to improve their planning and scheduling decisions can 

potentially achieve vast financial benefits by improving capacity utilisation and cost 

effectiveness. Saraph (2001) reports direct benefits from a 2 month long capacity 

analysis project o f a Bayer Corporation biomanufacturing facility amounting to 

$1,100,000. It has been estimated (Mallik et a i,  2002) that a typical mammalian cell- 

culture facility can increase annual revenues by $380 million with a 25% increase in 

plant utilisation. Thus these examples further reinforce the possible savings 

improvements in scheduling and planning decisions can help achieve.

- 145-



Chapter 8

Validation Issues

8.1. Introduction

In the biopharmaceutical industry each step o f any process with a direct impact on 

the final product must be validated by the appropriate regulatory authority for the 

geographic region where it will be licensed. Validation is defined by the FDA (Food 

and Drug Administration) as “Establishing documented evidence which provides a 

high degree o f assurance that a specific process will consistently produce a product 

meeting its pre-determined specifications and quality attributes”. Validation requires 

the enforcement o f manufacturing guidelines and regulations. In the 

biomanufacturing industry a process is said to be compliant with Good 

Manufacturing Practice (GMP), a set o f regulations, codes, and guidelines for the 

manufacture o f drugs, medical devices, diagnostic products, foods products and 

Active Pharmaceutical Ingredients (APIs).

Aside from validation being a legal requirement, it also brings many benefits to a 

manufacturer. Some typical benefits of the validation process include:

• Increasing the understanding o f a system or process.

• Ensuring the safety and efficacy of a manufactured product.
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• Producing evidence o f and enforcing set quality control (QC) criteria.

• Enhancing the credibility o f analytical data if  a batch is questioned.

Given the nature o f this EngD thesis, the following section will focus on the 

validation o f software systems.

8.2. Software Validation

Software validation cannot be ignored as it may influence a part or all of a given 

process. Any software system which performs a regulated function must have its 

production, control, review and operation validated.

General guidelines for manufacturing software validation are presented in the Good 

Automated Manufacturing Practice (GAMP) guidelines. Whether applied within 

GMP (Good Manufacturing Practice), GCP (Good Clinical Practice) GLP (Good 

Laboratory Practice) or GDP (Good Distribution Practice) these validation guidelines 

provide the user and/or supplier of a software system with a valuable framework for 

the production and use o f compliant validated bioprocess software.

An overview o f the validation process is shown below:

• Planning: Prepare a written validation plan.

• Specification: Specify and agree what is required. Perform design reviews.

• Test planning: Prepare document to describe how the equipment/system is to be 

tested (includes Installation qualification (IQ), operational qualification (OQ) and 

performance qualification (PQ)).

• Testing: Perform tests and collect results (IQ, OQ and PQ).

• Review and Report: Review results to show that system performs as specified,

report conclusions, plus any reservations.
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Some benefits o f  the GAMP validation process include:

• Reducing time and costs taken to achieve compliant systems.

• Eliminating the need for expensive retrospective validation.

• Providing better visibility o f projects to ensure delivery on time, on budget, and 

to agreed quality standards.

• Clarifying the division o f responsibility between the user and the supplier.

• Providing cost benefits, by aiding the production of systems that are fit for

purpose and meet user and business requirements.

The validation procedures and benefits shown above are applicable to the majority of 

automated systems in the biopharmaceutical industry. However, not all software 

employed within the biopharmaceutical industry performs a regulated function.

8.3. Decision Support Systems

Regulatory authorities enforce only that systems which perform a “regulated” 

function must be validated, examples include automated and online control and 

operation software.

The work presented in this thesis does not perform a regulated function and hence 

falls into the category o f decision support systems, which includes systems such as 

planning, scheduling, process simulation and supply chain optimisation tools, which 

are often used for “what i f ’ decision making analysis or for the generation of 

production plans or operating schedules. Such tools do not have a direct effect on the 

manufacturing process as they are only used to aid the decision maker or operator. 

Hence, such tools are exempt from the bioprocess/biomanufacturing validation 

process.
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Decision support systems will however generally be expected to undergo software 

validation in the final stages o f their development, where it is generally referred to as 

software testing. Software testing is a process used to help identify the correctness, 

completeness, security and quality o f newly developed computer software. These 

tests include standard testing such as alpha and beta testing which is used for the 

debugging o f software and ensuring user specified requirements are met.

While, implementation of the work generated in this EngD will not require validation 

directly, there are some important considerations which are affected by the validation 

process. Some indirect validation issues are discussed below:

• Manufacturing specific considerations: modelling of the relevant manufacturing 

consideration must be accounted for. e.g. if  a certain facility is validated to 

certain specifications, such as suite specific product manufacturing, this must be 

represented accurately or production plans will be infeasible.

• Decision support not decision-making: many validation related issues are not 

accounted for in the modelling framework. While a given production plan may be 

optimal in the mathematical sense, issues such as the risk of contamination and 

the high validation costs associated with frequent changeover may not be 

accounted for.

8.4. Conclusions

The validation process is a legal requirement, with many benefits to the 

manufacturer, however is not applicable to decision support systems such as those 

presented in this EngD thesis. However, as with the majority of software products, 

decision support svstems are required to meet certain software testing standards, and 

those used in the biomanufacturing industry are no exception.
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Chapter 9 

Conclusions & Future Directions

Operating multiproduct facilities in the biopharmaceutical sector poses several 

challenges for planning and scheduling. Significant economic benefits may be 

expected if  these can be overcome (Gosling, 2003). A survey of academic work 

involving the application o f mathematical programming to production planning in 

the process industries identified a distinct lack of work in bioprocessing. Hence, the 

aim of this thesis was to facilitate the biopharmaceutical industry’s strategic and 

operational decision-making by applying mathematical programming techniques for  

production planning o f  biopharmaceutical manufacturing facilities. Towards that 

goal, a number o f  optimisation-based frameworks have been developed in order to 

assist decision-makers in the biopharmaceutical industry. The key contributions of 

the thesis are summarised in Section 9.1, while Section 9.2 suggests promising new 

directions for future research work.

9.1. Contributions of this Thesis

The contributions o f this thesis will be presented for each of the research Chapters 

(3-8) and are as follows.
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9.1.1. M edium term Planning of Biopharmaceutical 
Manufacture

The aim o f Chapter 3 was the determination of the optimal medium term production 

plans for a multiproduct, multi-suite biopharmaceutical manufacturing facility by 

capturing the characteristic bioprocessing features of the production planning 

problem in the biopharmaceutical industry.

A mathematical programming approach using a mixed integer linear programming 

(MILP) formulation for medium term planning of biopharmaceutical manufacture 

was presented. An improved formulation was used to represent and solve two 

illustrative examples. The solutions obtained using the mathematical programming 

approach were compared to those generated by an industrial rule based (IRB) 

approach which demonstrated the value of the proposed approach. In both examples 

considered, the mathematical programming approach was shown to outperform IRB 

in terms o f profitability. The profitability achieved by MP was considerably higher 

demonstrating the necessity for calculated decisions regarding campaign 

changeovers and inventory profiles. This confirmed the ineffectiveness of IRB 

approaches for solving larger more complex planning problems. The proposed 

mathematical programming approach offers an improved alternative to industrial 

rule-based methods for medium term planning of biopharmaceutical manufacture and 

presents biomanufacturers with a business decision support tool to aid in 

production/capacity planning and obtaining longer term strategic decisions.

9.1.2. M edium term Planning of Biopharmaceutical 
M anufacture under Uncertainty

The challenges o f incorporating the impact of uncertainty in biopharmaceutical 

manufacturing production plans were addressed in Chapters 4 and 5. Mathematical 

programming formulations were developed and assessed for their suitability in 

determining the optimal medium term production plans for a multiproduct 

biopharmaceutical manufacturing facility given uncertain fermentation titres. 

Solutions were required to be achieved within a reasonable computational time 

without compromising significantly the quality of the obtained solution.
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9.1.2.1. Medium term Planning o f  Biopharmaceutical Manufacture 
using Two-Stage Programming

Initially, the problem was formulated as a two-stage programming model and an 

iterative algorithm was proposed for the problem’s efficient solution. The example 

problems presented in Chapter 4 were all solved using a deterministic model, a full- 

space two-stage programming model, a rolling horizon algorithm and a proposed 

construction/improvement algorithm (CON/IMP). The impact of uncertainty on the 

solution schedules was quantified for both examples via Monte Carlo simulation. 

The results showed that CON/IMP consistently matched or exceeded the solution 

quality achieved by the full space model and the rolling horizon algorithm while 

making considerable improvements on the deterministic model. This is a valuable 

framework for biomanufacturers wishing to improve their medium term decision 

making capabilities by incorporating and addressing the impact of uncertain 

parameters within their manufacturing schedules. The approach would also likely be 

of much value in other applications o f two-stage programming as it is relatively 

generic in its nature.

9.1.2.2. Medium term Planning o f  Biopharmaceutical Manufacture 
using Chance Constrained Programming

An alternative mathematical optimisation-based framework for capturing uncertainty 

was presented in Chapter 5. As an alternative to multiscenario type representations a 

chance constrained approach was proposed for tackling variability in fermentation 

titres when planning biopharmaceutical manufacture. The approach was able to make 

considerable computational savings and resulted in very good quality solutions when 

compared with the two-stage programming approach proposed in Chapter 4. Chance 

constrained programming was demonstrated to be a powerful approach for tackling 

uncertainty as it was able to generate solutions of the same order of magnitude of 

those achieved using the deterministic model even for larger problems.
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9.1.3. Long term Strategic Planning of Biopharmaceutical 
Manufacture

The deterministic medium term planning model presented in Chapter 3 was extended 

to account for long term capacity management of biopharmaceutical facilities. The 

model was tested on an industrial case study to gain a better understanding of 

existing capacity capabilities and the quantification of the impact of different 

strategic operating polices on capacity decisions.

The problem was initially solved adopting a single objective problem formulation, 

where profit was maximised, and a capacity analysis was conducted to determine 

where additional capacity would be needed. The problem was then extended to allow 

for multiple objectives via goal programming, namely operating costs, customer 

service levels and capacity utilisation of owned facilities. Three different operating 

policies were compared, namely a cost biased, service level biased and an unbiased 

compromising policy. The policies were used to demonstrate the differing strategic 

objectives o f biopharmaceutical manufacturers and for the evaluation of different 

operating polices and quantification of operational performance at different monetary 

resource levels. Sensitivity studies were used to illustrate the impact of changes in 

operating costs on customer service levels.

Given the considerable costs and risks associated with capacity planning in the 

biopharmaceutical industry, the multiobjective optimisation framework presented has 

demonstrated potential as a useful aid in strategic decision-making for long term 

planning o f biopharmaceutical manufacture. Biopharmaceutical strategic decision­

makers are required to make considerable investments in capacity or financial 

commitments to contract manufacturers years in advance and hence would find such 

information invaluable in aiding both production and capacity planning decisions.

9.1.4. EngD Commercialisation

An implementation plan of a potential commercialisation route for the work 

generated in this EngD was presented in Chapter 7. The development of the model, 

appropriate software architecture, implementation issues, estimated project resource
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requirements and potential benefits were discussed. The model implementation was 

based on a typical biopharmaceutical industry production planning problem, whereby 

a biopharmaceutical manufacturer wished to optimise the production plans of a 

biomanufacturing facility or network of facilities using a hybrid 

simulation/optimisation approach.

9.1.5. Validation Issues

Validation issues relating to this EngD were presented in Chapter 8. In light of the 

nature o f this EngD, issues relating to the validation of software products and 

decision support systems within the biopharmaceutical industry were discussed here.

9.2. Recommendations for Future Work

The research presented in this thesis has identified a number of issues that need to be 

further investigated in order to develop more comprehensive optimisation-based 

frameworks for production planning, capacity planning and general capacity 

management o f biopharmaceutical manufacture.

9.2.1. Deterministic Models

The deterministic MILP model for medium-tem planning of biopharmaceutical 

manufacture proposed in this thesis was applied to a number of examples to 

demonstrate its applicability. However there remain some concerns pertaining to the 

models solution time which increases exponentially with small increases in problem 

complexity. In order for this model to be combined directly with frameworks for 

optimisation under uncertainty such as those proposed in Chapters 4 and 5 of this 

thesis, further work is necessary towards developing more efficient solution 

procedures for this proposed deterministic model. Tighter problem formulations may 

be required.
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Another potential avenue for further work is multiscale modelling of 

biopharmaceutical manufacture, e.g. the integration of the proposed medium term 

planning model with short term scheduling models such as that of Kondili et al. 

(1993) given that such models have been successfully applied to bioprocess 

scheduling in the past (Samsatli and Shah, 1996). Integration of long term 

planning/supply chain formulations with production planning in the medium term 

would also be a valuable exercise. This would be the next logical step in a more 

holistic integrated decision making framework for planning and scheduling of 

biopharmaceutical manufacture.

9.2.2. Medium term Planning of Biopharmaceutical 
Manufacture under Uncertainty

Chapter 4 and 5 were concerned with generating production plans given uncertain 

manufacturing conditions in the biopharmaceutical industry. A reduced version of 

the deterministic model was extended to allow for variable fermentation titres. 

Further work using discrete-event simulation for the validation of solution schedules 

via Monte Carlo simulation would also provide a more accurate understanding of the 

impact of uncertainty on solution schedules.

Two different optimisation-based frameworks for tackling the problem of production 

planning under uncertainty were developed, namely a two-stage programming 

approach and a chance constrained programming approach. Issues relating to further 

development o f them are discussed below.

9.2.2.1. Two-Stage Programming

The construction/improvement-based algorithm developed for the efficient solution 

of the combinatorial problem resulting from the two-stage programming 

formulations showed much promise in reducing the solution time while generating 

very good quality solutions. However it was only tested on problems involving one 

uncertain parameter (fermentation titre). There would be much value in extending the 

functionality o f the approach to tackle problems with additional uncertain 

parameters, for example, variable demands. The development of an alternative
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efficient solution algorithm by modifying the algorithm developed in this thesis may 

present challenges as the problem size increases with increasing uncertain 

parameters.

The algorithm presented is somewhat generic and would hence likely be of value in 

other applications o f two-stage programming whereby an insertion/construction type 

approach could be leveraged. Construction/improvement type algorithms have not 

previously been adopted in planning and scheduling under uncertainty or related 

applications within the field of decision-making under uncertainty.

9.2.2.2. Chance Constrained Programming

The Chance constrained formulation presented in Chapter 5 allowed only for 

uncertain fermentation titres, hence further work is also required on the formulation 

of models based on chance constrained programming that allow for an increased 

level of detail when tackling uncertainty. Once of the main challenges envisaged in 

the development o f new chance constrained programming formulations is the 

complexity that arises due to the joint probability distribution functions which result 

from the consideration o f multiple uncertain parameters.

9.2.3. Strategic Planning Models

The optimisation-based framework for long term strategic planning proposed in 

Chapter 6 was used for production planning of bulk product manufacture across 

multiple sites. There would potentially be much value in extending this approach to 

include not only bulk product manufacture but also secondary manufacturing steps 

(filling and packaging). The approach can also be extended to allow for different 

geographic locations through the incorporation of transportation costs and taxation 

features for an improved representation of the supply chain/multi-site planning 

problem. Given the considerable detail required, a simulation-based optimisation 

framework combining mathematical programming and discrete-event simulation is 

envisaged for tackling the complete supply chain problem.
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Another feature o f interest in this section and which may be incorporated in each of 

the models considered in this thesis is multiple production rates at differing costs. 

The concept o f running a facility at different rates resulting in differing 

manufacturing costs depending on capacity availability is a valid feature of 

biopharmaceutical manufacture.

Further work on the multiobjective optimisation formulation proposed would be of 

value, particularly on developing solution procedures for the more efficient solution 

of the problem and including uncertainty in the formulation. Further objectives may 

be included in the stochastic version of the problem, such as financial/market risk 

and robustness. Further experimentation with goal programming as a multiobjective 

optimisation approach would also be warranted as alternative approaches to weighted 

goal programming such as lexicographic and Chebyshev goal programming were not 

exhausted.

A number o f optimisation-based frameworks for production planning of 

biopharmaceutical manufacture have been developed and tested. Historical trends 

show the biopharmaceutical industry to be slow adopting such decision support tools, 

but more recently there are indications that the adoption of such tools is accelerating. 

Such approaches are envisaged to be more widespread by the end of the decade as 

market pressures continue to increase and the biopharmaceutical industry begins to 

mature.

- 157-



Bibliography

Ahmed, S., Sahinidis, N.V. and Pistikopoulos, E.N., (2000). An improved 

decomposition algorithm for optimization under uncertainty. Comput Chem Eng. 

23, 1589-1604.

Allgor, R.J., Barrera, M.D., Barton, P.I. and Evans, L.B., (1996). Optimal batch 

process development. Comput Chem Eng. 20, 885-896.

Applequist, G., Samikoglu, O., Pekny, J. and Reklaitis, G., (1997). Issues in the use, 

design and evolution o f process scheduling and planning systems. ISA Trans. 36, 

81-121.

Azapagic, A. and Clift, R., (1999). The application of life cycle assessment to 

process optimisation. Comput Chem Eng. 10, 1509-1526.

Balasubramanian, J. and Grossmann, I.E., (2002). A novel branch and bound 

algorithm for scheduling flowshop plants with uncertain processing times. 

Comput Chem Eng. 26, 41-57.

Balasubramanian, J. and Grossmann, I.E., (2003). Scheduling optimization under 

uncertainty - an alternative approach. Comput Chem Eng. 27, 469-490.

Balasubramanian, J. and Grossmann, I.E., (2004). Approximation to multistage 

stochastic optimization in multiperiod batch plant scheduling under demand 

uncertainty. Ind Eng Chem Res. 43, 3695-3713.

Barnes, J. and Laguna, M., (1993). A Tabu search experience in production 

scheduling. Ann Oper Res. 41, 141— 156.

- 158-



Bibliography

Bassett, M.H., Dave, P., Doyle, F.J., Kudva, G.K., Pekny, F.J., Reklaitis, G.V., 

Subrahmanyam, S., Miller, D.L. and Zentner, M.G., (1996a). Perspectives on 

model based integration of process operations. Comput Chem Eng. 20, 821-844.

Bassett, M.H., Pekny, F.J. and Reklaitis, G.V., (1996b). Decomposition techniques 

for the solution o f large-scale scheduling problems. AIChE J. 42, 3373-3387.

Bellman, R. and Zadeh, L.A., (1970). Decision-making in a fiizzy environment. 

Manage Sci. 17, 141-161.

Beming, G., Brandenburg, M., Gursoy, K., Kussi, J.S., Mehta, V. and Tolle, F.,

(2004). Integrating collaborative planning and supply chain optimization for the 

chemical process industry: (1) methodology. Comput Chem Eng. 28, 913-927.

Bhaskar, V., Gupta, S.K. and Ray, A.K., (2000). Applications of multiobjective 

optimization in chemical engineering. Rev Chem Eng. 16, 1-54.

Bhushan, S. and Karimi, I.A., (2004). Heuristic algorithms for scheduling an. 

automated wet-etch station. Comput Chem Eng. 28, 363.

Biegler, L.T. and Ignacio, E., Grossmann., (2004). Retrospective on optimization. 

Comput Chem Eng. 28, 1169-1192.

Birewar, D.B. and Grossmann, I.E., (1990). Simultaneous production planning and 

scheduling in multiproduct batch plants. Ind Eng Chem Res. 29, 570-580.

Birge, J.R. and Louveaux, F., (1997). Introduction to stochastic programming, 

Springer, New York.

Biwer, A., Griffith, S. and Cooney, C., (2005). Uncertainty analysis of penicillin V 

production using Monte Carlo simulation. Biotechnol Bioeng. 90, 167-179.

Brastow, W.C. and Rice, C.W., (2003). Planning pharmaceutical manufacturing 

strategies in an uncertain world. BioProcess Int. 1, 46-55.

Brooke, A., Kendrick, D., Meeraus, A. and Raman, R., (1998). GAMS: A User's 

Guide. GAMS Development Corporation, Washington.

- 159-



Bibliography

Castro, P., Mendez, C., Grossmann, I.E., Haijunkoski, I. and Fahl, M., (2006). 

Efficient MILP-based solution strategies for large-scale industrial batch 

scheduling problems. ESCAPE-16/PSE-2006.

Chames, A. and Cooper, W.W., (1959). Chance constrained programming. Manage 

Sci. 6, 73-79.

Chames, A. and Cooper, W.W., (1961). Management models and industrial 

applications o f  linear programming, Wiley, New York.

Chen, C.L., Wang, B.W. and Lee, W.C., (2003). Multi-objective optimization for a 

multi-enterprise supply chain network. Ind Eng Chem Res. 42, 1879-1889.

Cheng, L., Subrahmanian, E. and Westerberg, A.W., (2003). Design and planning 

under uncertainty: issues on problem formulation and solution. Comput Chem 

Eng. 27, 781-801.

Cheng, L.F., Subrahmanian, E. and Westerberg, A.W., (2004). A comparison of 

optimal control and stochastic programming from a formulation and computation 

perspective. Comput Chem Eng. 29, 149-164.

Chemical market reporter, (1998). Biopharmaceutical manufacturing moves into the 

custom arena. Chem M ark Rep. Jan 19, F22.

Clay, R.L. and Grossmann, I.E., (1997). A disaggregation algorithm for the 

optimization o f stochastic planning models. Comput Chem Eng. 21, 751-774.

Coe, J., (2001). The generics industry in 2005: a new threat to Pharma. Datamonitor.

Dimitriadis, A.D., Shah, N. and Pantelides, C.C., (1997). RTN based rolling horizon 

algorithms for medium-term scheduling of multipurpose plants. Comput Chem 

Eng. S21: S1061-S1066.

Farid, S., (2001). A decision-support tool fo r simulating the process and business 

perspectives o f  biopharmaceutical manufacture. PhD thesis, University College 

London.

- 1 6 0 -



Bibliography

Farid, S.S., Washbrook, J. and Titchener-Hooker, N.J., (2005). A decision-support 

tool for assessing bio-manufacturing strategies under uncertainty: stainless steel 

versus disposable equipment for clinical trial material preparation. Biotechnol. 

Progr. 21, 486-497.

Finlay, P.N., (1994). Introducing decision support systems. Oxford, UK Cambridge, 

Mass, NCC Blackwell, Blackwell Publishers.

Foo, F., Karri, S., Davies, E., Titchener-Hooker, N.J. and Dunnill, P., (2001). 

Biopharmaceutical process development: part I, information from the first 

product generation. BioPharm Eur. 13, 58-64.

Fox, S., (2005). Contract manufacturing fills industry niche. Genet Eng News. 25, 17.

Gatica, G., Papageorgiou, L.G. and Shah, N., (2003a). Capacity planning under 

uncertainty for the pharmaceutical industry. Chem Eng Res Des. 81, 665-678.

Gatica, G., Papageorgiou, L.G. and Shah, N., (2003b). An aggregation approach for 

capacity planning under uncertainty for the pharmaceutical industry. FOCAPO- 

2003.

Ginsberg, P.L., Bhatia, S. and McMinn, R.L., (2002). The road ahead for biologies 

manufacturing. US Bancorp Piper J affray, NY.

Gjerdrum, J., Shah, N. and Papageorgiou, L.G., (2001). Transfer prices for 

multienterprise supply chain optimisation. Ind Eng Chem Res. 40, 1650-1660.

Gjerdrum, J., Shah, N. and Papageorgiou, L.G., (2001). A combined optimization 

and agent-based approach to supply chain modelling and performance 

assessment. Prod Plan Control. 12, 81 — 88.

Glover, F. and Laguna, M., (1997). Tabu search. Kluwer, Norwell, MA.

Goldberg, D.E., (1989). Genetic algorithms in search optimization and machine 

learning. Reading, MA. Addison Wesley.

- 1 6 1 -



Bibliography

Gosling, I., (2003). Process simulation and modelling strategies for the 

biotechnology industry. Genet Eng News. 23, 58.

Gottschalk, U., (2005). New and unknown challenges facing biomanufacturing: An 

editorial. BioPharm Int. 18, 24.

Grunow, M., Gunther, H.O. and Yang, G., (2003). Plant co-ordination in 

pharmaceutics supply networks. OR Spektrum. 25, 109-141.

Guillen, G., Mele, F.D., Bagajewicz, M.J., Espuna, A., and Puigjaner, L., (2005). 

Multiobjective supply chain design under uncertainty. Chem Eng Sci. 60, 1535- 

1553.

Gupta, A. and Maranas, C.D., (1999). A hierarchical Lagrangean relaxation 

procedure for solving midterm planning problems. Ind Eng Chem Res. 38, 1937- 

1947.

Gupta, A., Maranas, C.D. and McDonald, C.M., (2000). Midterm supply chain 

planning under demand uncertainty: customer demand satisfaction and inventory 

management. Comput Chem Eng. 24, 2613-2621.

Gupta, A. and Maranas, C.D., (2003). Managing demand uncertainty in supply chain 

planning. Comput Chem Eng. 27, 1219-1227.

Gupta, A. and Maranas, C.D., (2004). Real-options-based planning strategies under 

uncertainty. Ind Eng Chem Res. 43, 2870-2878.

Haimes, Y.Y., Lasdon, L.S. and Wismer, D.A., (1971). On a bicriterion formulation 

o f the problems o f integrated system identification and system optimization. 

IEEE T  Syst Man Cyb 1, 296-297.

Hung, W.Y., Samsatli, N.J. and Shah, N., (2006). Object-oriented dynamic supply- 

chain modelling incorporated with production scheduling. Eur J  Oper Res. 169, 

1064-1076.

- 1 6 2 -



Bibliography

Ierapetritou, M.G. and Pistikopoulos, E.N., (1994a). Novel optimization approach of 

stochastic planning models. Ind Eng Chem Res. 33, 1930-1942.

Ierapetritou, M.G., Pistikopoulos, E.N. and Floudas, C.A., (1994b). Operational 

planning under uncertainty. Comput Chem Eng. S I8, S553.

Ierapetritou, M.G. and Floudas, C.A., (1998a). Effective Continuous- Time 

Formulation for Short-Term Scheduling. (1) Multipurpose Batch Processes. Ind. 

Eng Chem Res. 37, 4341-4359.

Ierapetritou, M.G. and Floudas, C.A., (1998b). Effective continuous-time 

formulation for short-term scheduling. (2) Continuous and semi-continuous 

Processes. Ind Eng Chem Res. 37, 4360- 4374.

Ierapetritou, M.G., Floudas, C.A., (1999). Effective continuous time formulation for 

short-term scheduling. (3) Multiple intermediate due dates. Ind Eng Chem Res. 

38, 3446-3461.

Iribarren, O.A., Montanan, J.M., Vecchietti, A.R., Andrews, B., Asenjo, J.A. and 

Pinto, J.M., (2004). Optimal process synthesis for the production of multiple 

recombinant proteins. Biotechnol Progr. 20, 1032-1043.

ISO 14040. (1997). Environmental Management - Life Cycle Assessment - Part 1: 

principles and framework. ISO.

Jain, V. and Grossmann, I.E., (1999). Resource-constrained scheduling of tests in 

new product development. Ind Eng Chem Res, 38, 3013-3026.

Jackson, J.R. and Grossmann, I.E., (2003). Temporal decomposition scheme for 

nonlinear multisite production planning and distribution models. Ind Eng Chem 

Res. 42, 3045-3055.

Jung, J., Blau, G., Penky, J., Reklaitis, G. and Eversdyk, D., (2004). A simulation 

based optimization approach to supply chain management under demand 

uncertainty. Comput Chem Eng. 28, 2087-2106.

- 163-



Bibliography

Kail, P. and Wallace, S.W., (1994). Stochastic programming. John Wiley and Sons, 

Chichester, U.K.

Kallrath, J., (2002). Planning and scheduling in the process industry. OR Spektrum. 

24,219-250.

Kamarck, M.E., (2006). Building biomanufacturing capacity - the chapter and verse. 

Nat. Biotechnol. 24, 503 - 505.

Karimi, I.A. and McDonald, C.M., (1997). Planning and scheduling of parallel 

semi continuous processes. (2) Short-term scheduling. Ind Eng Chem Res. 36, 

2701-2714.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., (1983). Optimization by simulated 

annealing, Science. 220, 671-680.

Kondili, E., Pantelides, C.C. and Sargent, R.W.H., (1993). A general algorithm for 

short-term scheduling of batch operations - (I) MILP formulation. Comput Chem 

Eng. 17,211-227.

Ku, H. and Karimi, I., (1991). An evaluation of simulated annealing for batch 

process scheduling. Ind Eng Chem Res. 30, 163.

Langer, E.S., (2004). Big shifts in outsourcing biopharmaceutical manufacturing- 

half o f manufacturers to outsource production by 2008. Genet Eng News. 24, 56- 

58.

Lamba, N. and Karimi, I.A., (2002a). Scheduling parallel production lines with 

resource constraints. 1. Model formulation. Ind Eng Chem Res. 41, 779-789.

Lamba, N. and Karimi, I.A., (2002b). Scheduling parallel production lines with 

resource constraints. 2. Decomposition algorithm. Ind Eng Chem Res. 41, 790- 

800.

Lee, Y.G. and Malone, M.F., (2000). Flexible batch processing. Ind Eng Chem Res. 

39, 2045 -  2055.

- 164-



Bibliography

Levis, A.A. and Papageorgiou, L.G., (2004). A hierarchical solution approach for 

multi-site capacity planning under uncertainty in the pharmaceutical industry. 

Comput Chem Eng. 28, 707-725.

Li, S., Schoneich, C. and Borchardt, R.T., (1995). Chemical instability of protein 

pharmaceuticals: mechanisms of oxidation and strategies for stabilization. 

Biotechnol Bioeng. 48, 490-500.

Lim, A.C., Zhou, Y., Washbrook, J., Titchener-Hooker, N.J. and Farid, S.S., (2004). 

A decisional-support tool to model the impact of regulatory compliance activities 

in the biomanufacturing industry. Comput Chem Eng. 28, 727-735.

Lim, A.C., Zhou, Y., Washbrook, J., Sinclair, A., Fish, B., Francis, R., Titchener- 

Hooker, N.J. and Farid, S.S., (2005). Application of a decision-support tool to 

assess pooling strategies in perfusion culture processes under uncertainty. 

Biotechnol Progr. 21, 1231 - 1242.

Lim, M.F. and Karimi, I.A., (2003). A slot-based formulation for single-stage 

multiproduct batch plants with multiple orders per product. Ind Eng Chem Res. 

42, 1914-1924.

Liu, M.L. and Sahinidis, N.V., (1996a). Long range planning in the process 

industries: A projection approach. Comput Oper Res. 23, 237-253.

Liu, M.L. and Sahinidis, N.V., (1996b). Optimization in process planning under 

uncertainty. Ind Eng Chem Res. 35, 4154-4165.

Liu, M.L. and Sahinidis, N.V., (1997). Process planning in a fuzzy environment. Eur 

J  Oper Res. 100, 142-169.

Lohl, T., Schulz, C. and Engell, S., (1998). Sequencing of batch operations for a 

highly coupled production process: genetic algorithms versus mathematical 

programming. Comput Chem Eng. S22, S579-S585.

Mallik, A., Pinkus, G.S. and Sheffer, S., (2002). Biopharma’s capacity crunch. The 

McKinsey Quarterly, Special edition 2002: Risk and Resilience: 9-11.

- 165-



Bibliography

Maravelias, T.C. and Grossmann, I.E., (2001). Simultaneous planning for new 

product development and batch manufacturing facilities. Ind Eng Chem Res. 40, 

6147-6164.

Mauderli, A. and Rippin, D.W.T., (1979). Production planning and scheduling for 

multipurpose batch chemical plants. Comput Chem Eng. 3, 199-206.

McDonald, C.M. and Karimi, I.A., (1997). Planning and scheduling of parallel 

semicontinuous processes. 1. Production planning. Ind Eng Chem Res. 36, 2691- 

2700.

Mendez, C.A. and Cerda, J., (2003). Dynamic scheduling in multiproduct batch 

plants. Comput Chem Eng, 27, 1247-1259.

Miettinen, K.M., (1999). Nonlinear multiobjective optimization. Kluwer Academic 

Publishers, Boston.

Mustafa, M.A., Washbrook, G., Titchener-Hooker, N.J. and Farid, S.S., (2006). 

Retrofit decisions within the biopharmaceutical industry: an EBA case study. 

Food Bioprod Process. 84, 84 -  89.

Oh, H.C. and Karimi, I.A., (2001). Planning production on a single processor with 

sequence-dependent setups. Part 2: campaign sequencing and scheduling. 

Comput Chem Eng. 25, 1021- 1030.

Oh, H.C. and Karimi, I.A., (2004). Regulatory factors and capacity-expansion 

planning in global chemical supply chains. Ind Eng Chem Res. 43, 3364-3380.

Ott, L., Mendenhall, W., (1990). Understanding statistics. Duxbury Press (fifth 

Edition).

Pantelides, C.C., (1994). Unified framework for optimal process planning and 

scheduling. Proc. Conf. o f  Foundations o f  Computer Aided Operations CACHE 

Corp. 253.

- 166-



Bibliography

Papageorgiou, L.G. and Pantelides, C.C., (1996a). Optimal campaign planning 

scheduling of multipurpose batch semicontinuous plants (1) Mathematical 

formulation. Ind Eng Chem Res. 35, 488 -  509.

Papageorgiou, L.G. and Pantelides, C.C., (1996b). Optimal campaign planning 

scheduling o f multipurpose batch semicontinuous plants (2) A mathematical 

decomposition approach. Ind Eng Chem Res. 35, 510 -  529.

Papageorgiou, L.G., Rotstein, G.E. and Shah, N., (2001). Strategic supply chain 

optimisation for the pharmaceutical industries. Ind Eng Chem Res. 40, 275-286.

Petkov, S.B. and Maranas, C.D., (1997). Multiperiod planning and scheduling of 

multipurpose batch plants under demand uncertainty. Ind Eng Chem Res. 36, 

4864-4881.

Petrides, D. and Siletti, C., (2004). The role of process simulation and scheduling 

tools in the development and manufacturing of biopharmaceuticals. Winter 

Simulation Conference 2004. 2046

Petrides, D., Koulouris, A. and Siletti, C., (2004). Throughput analysis and 

debottlenecking o f biomanufacturing facilities. BioPharm Int. 15, 28.

Pinedo, M., (2002). Scheduling: theory, algorithms, and systems. Prentice Hall, 

Englewood Cliffs, NJ.

Rajapakse, A., Titchener-Hooker, N.J. and Farid, S.S., (2005). Modelling of the 

biopharmaceutical drug development pathway and portfolio management. 

Comput Chem Eng. 29, 1357-1368.

Ransohoff, T. C., (2004). Considerations impacting the make vs. buy decision. 

American Pharmaceutical Outsourcing. 5, 52-63.

Reeves, C.R. (Ed.), (1995). Modern heuristic techniques fo r  combinatorial problems. 

London: McGraw Hill.

- 167-



Bibliography

Rodera, H. Bagajewicz, M.J. and Trafalis, T.B., (2002). Mixed-integer 

multiobjective process planning under uncertainty. Ind Eng Chem Res. 41, 4075- 

4084.

Roslof, J., Haijunkoski, I., Bjorkqvist, J., Karlsson, S. and Westerlund, T., (2001). 

An MILP-based reordering algorithm for complex industrial scheduling and 

rescheduling. Comput Chem Eng. 25, 821-828.

Rotstein, G.E., Papageorgiou, L.G., Shah, N., Murphy, D.C. and Mustafa, R., (1999). 

A product portfolio approach in the pharmaceutical industry, Comput Chem Eng. 

S23, S883-S886.

Ryu, J.H.; Lee, H.K. and Lee, I.B., (2001). Optimal scheduling for a multiproduct 

batch process with minimization of penalty on due date period. Ind Eng Chem 

Res. 40, 228 - 233.

Sabri, E.H. and Beamon, B.M., (2000). A multi-objective approach to simultaneous 

strategic and operational planning in supply chain design. Omega. 28, 581-598.

Sahinidis, N.V., (2004). Optimization under uncertainty: state-of-the-art and 

opportunities. Comput Chem Eng. 28, 971-983.

Sahinidis, N.V., Grossmann, I.E., Fomari, R.E. and Chathrathi, M., (1989). An 

optimization model for long-range planning in the chemical industry. Comput 

Chem Eng. 13, 1049—1063.

Samsatli, N.J. and Shah, N., (1996). Optimal integrated design of biochemical 

processes. Comput Chem Eng. 20, S315-S320.

Saraph, P., (2001). Simulating biotech manufacturing operations: issues and 

complexities. Proceedings o f  the 33rd Winter Simulation Conference 2001. 524

Shah, N., (1998). Single- and multi-site planning and scheduling: current status and 

future challenges. AlChE Symp Ser. 94, 75-90.

- 168-



Bibliography

Shah, N., (2004). Pharmaceutical supply chains: key issues and strategies for 

optimisation. Comput Chem Eng. 28, 929-941.

Shah, N., (2005). Process industry supply chains: advances and challenges. Comput 

Chem Eng. 29, 1225-1235.

Shanklin, T., Roper, K., Yegneswaran, P.K. and Marten., M.R., (2001). Selection of 

bioprocess simulation software for industrial applications. Biotechnol Bioeng. 72, 

483-489.

Snow, D.C., Wheelwright, S.C. and Wagonfeld, A.B., (2005). Genentech - capacity 

planning. Harvard Business School Case. 606-052.

Sofer, G., (1995). Validation of biotechnology products and processes. Curr Opin 

Biotechnol. 6, 230-234.

Sofer, G. and Hagel, L., (1997). Handbook o f process chromatography: a guide to 

optimization, scale up, and validation, Academic Press, Inc., New York, N.Y.

Sundaramoorthy, A. and Karimi, I. A., (2004). Planning in pharmaceutical supply 

chains with outsourcing and new product introductions. Ind Eng Chem Res. 43, 

8293.

Taha, H.A., (2003). Operations research: an introduction. - 7th ed. Prentice Hall.

Tamiz, M., Jones, D.F. and El-Darzi, E., (1995). A review of goal programming and 

its applications. Ann Oper Res, 58, 39-53.

Tandon, M., Cummings, P.T. and Le Van, M.D., (1995). Scheduling of multiple 

products on parallel units with tardiness penalties using simulated annealing. 

Comput Chem Eng. 19, 1069-1076.

Thiel, K.A., (2004). Biomanufacturing, from bust to boom...to bubble? Nature. 

Biotechnol. 22, 1365 — 1372.

- 169-



Bibliography

Tsang, K.H., Samsatli, N.J. and Shah, N., (2006). Modelling and planning 

optimization o f a complex flu vaccine facility. Food Bioprod Process. 84, 123- 

134.

Walsh, G., (2003). Biopharmaceutical Benchmarks. Nature. Biotechnol. 21, 865-870.

Wan, X., Pekny J.F. and Reklaitis, G.V., (2005). Simulation-based optimization with 

surrogate models: application to supply chain management. Comput Chem Eng. 

29, 1317-1328.

Wemer, F. and Winkler, A., (1995). Insertion techniques for the heuristic solution of 

the job shop problem. Discrete Appl Math. 58, 191-21.

Williams, H., (1999). Model building in mathematical programming. Auflage. 

Wiley.

Wilkins, J., Sesin, D. and Wisniewski, R., (2001). Large-scale cryopreservation of 

biotherapeutic products. Innov Pharm Technol. 1, 174—180.

Wilkinson, S.J., Shah, N. and Pantelides, C.C., (1995). Aggregate modelling of 

multipurpose batch plant operation. Comput Chem Eng. S19, S583-S588.

Wilkinson, S.J., Cortier, A., Shah, N., Pantelides, C.C., (1996). Integrated production 

and distribution scheduling on a Europe-wide basis. Comput Chem Eng. S20, 

S1275-S1280.

Wolsey, L.A., (1998). Integer programming. Chichester: Wiley.

Zadeh, L.A., (1965). Fuzzy sets. Inform Control. 8, 338-353.

Zhou, Z., Cheng, S. and Hua, B., (2000). Supply chain optimization of continuous 

process industries with sustainability considerations. Comput Chem Eng. 24, 

1151-1158.

Zimmermann, H.J., (1978). Fuzzy programming and linear programming with 

several objective functions. Fuzzy Set Syst. 1, 45-55.

- 170-



Appendices

Appendix 1

Assessment o f Optimisation Tools for Model 
Commercialisation

Basic Assumptions

The assumption with all the products selected for this survey is that they are:

• Capable o f handling MILP optimisation models.

• Compatible with Microsoft’s Windows.

• Not limited by problem size (i.e. a maximum number of variables).

• Required only for a single site (licensing).

• Tables A .l and A.2 show comparisons of modelling environments and solvers. 

Background on survey conducted

The tools shown above were selected from a list of tools/vendors compiled for 

OR/MS Today’s 2005 Linear programming software survey (copyright © 2005 by 

the Institute for Operations Research and the Management Sciences. All rights 

reserved) as well as direct communication with the vendors.

The modelling environments considered in this survey have all been described as 

either:
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• M: Modelling environment: These packages are typically designed around a 

computer modelling language for expressing optimisation models, and offer 

features for reporting, model management and application development. They are 

often bundled with commercially available solvers at discounted prices and hence 

allow for straight forward benchmarking, e.g. GAMS, AMPL.

• MI: Integrated modelling environment: These integrated systems provide a 

modelling environment usually geared towards their own solvers, and a graphical 

user interface (GUI) for better model management and debugging, and are often 

termed development studios. Some include a particularly easy to use GUI for 

straightforward intuitive model building, reducing the volume and complexity of 

associated computer programming challenges. An example of this is ILOG’s 

OPL Studio.

• Solvers: Commercial and compatible mixed integer programming (MIP) solvers.
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Table A.l: Comparison o f modelling environments (*M - Modelling environment, MI - 
Modelling environment with integrated solvers).

\ i Pricing ($) /

| Product j B rief 

i (V endor) \ D escription*

j C om patible  

| Solvers

Read/write  

spreadsheets 

and databases

A P I’s (annual

P-a)

Developer

License

m aintenance^

End User 

License

AIM M S/ MI | CPLEX, Yes C++ 7000 i 6000

! (Paragon D ecision  { 

I Technology BV ) j

XPRESS COM (15%) (15%)

AMPL/ M :CPLEX, Yes C 4000 4000

; (AMPL Optimization j 

LLC) i

XPRESS, 

\ FortMP

COM (0 ) (0 )

; AMPL Studio/AM PL i M j FortMP, Yes C 4950 4950

COM Object 

: (OptiRisk System s) |

|  CPLEX, others
j

COM (0 ) (0 )

GAMS fM CPLEX, Yes GDX API ’3200 (50%)

(GAMS D evelopm ent j j XPRESS ;v b i(0 ) |( 0 )

i Corporation) j |

I LOG OPL MI jlLOG CPLEX, Yes COM 1 2 2 0 0 1 2 2 0 0

: Development Studio j j  ILOG Solver, !C++

(1LOG) j | ILOG Scheduler • |(18%) (18%)

LINGO MI Tl i n d o  API ; Yes s c 14995 70%

(LINDO Systems, Inc) j \

\
:c++ 1(0 ) (0 )

OML MI IC-WHIZ Read 1 c 3800 3800

i (The Bionetics j 

| Corporation) j j

spreadsheets

only

( (0 ) 1(0 )

TOMLAB Tm I CPLEX, Yes j  Utilises Matlab’s 5 900 900

(Tomlab Optimization 

Inc)

XPRESS (API, (Matlab + 

:COM, C, C++)

(2 0 %) 1(2 0 %)

What'sBest MI LINDO API i  Read &  write jc 4995 70%
i !
i  (LINDO System s, Inc) j

j (Excel addi n)

\ |  spreadsheets 

ionly

|c++ (0) (0)

Xpress-MP Suite j MI "[Mosel, Yes {C/C++ 5500 45%

| (Dash Optimization) j XPRESS, MPL I JAVA, .Net, VB (15%) (15%)
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Table A. 2: Comparison o f solvers (0% annual maintenance means that 

maintenance/upgrades and support is optional).

Pricing ($) /

(annual m ain ten an ce^ :

Product B rief Products That Link to i R ead/write P-a)

(V endor) D escription Product spreadsheets 

and database
Developer

License

Developer

License

C-WHIZ Simplex and MIP AMPL, MPL, GAMS, Reads 2500 2500

(The Bionetics solver preadsheets (0%) (0%)
Corporation) only

FortMP Sim plex, interior \ AMPL, MPL, Tomlab lead & write 2500 2500

(OptiRisk Systems) point, MIP, 

quadratic

ext only (0%) (0%)

I LOG CPLEX Simplex, interior ILOG OPL Studio, i Reads 14650 14650

(ILOG) point, MIP, AIMMS, AMPL, i spreadsheets

network, GAMS, MPL, Tomlab only (18%) (18%)

quadratic

LIN EX) API Simplex , MIP LINGO and What'sBest Read & write 4000 70%

(LINDO System s, Inc) and quadratic 

solver

) text only (0%) (0%)

XPRESS Solver Engine Simplex, interior! Excel, Tomlab (Yes 6000 45%

(Frontline Systems Inc) point, MIP, 

quadratic

(15%) (15%)

Proposed tool selection i(Adventurous user”

The proposed tools selection assumes that the user has some computer programming 

experience, as GAMS has a relatively steep learning curve and requires a reasonable 

level o f modelling skills for use.

In my opinion the best option from a price and performance perspective would be to 

opt for a modelling environment like GAMS, coupled with a solver like XPRESS or 

CP LEX (available directly from GAMS), they are priced as in Table A.3.
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Table A. 3: Associated costs for adventurous user option

Licensing GAMS XPRESS CPLEX

Developer licence $3200 $7000 $6400

Run time Licence $1600 $3200 $3500

These solvers are priced considerably lower than development prices from the 

original solver vendors (e.g. CPLEX from Ilog, developer licence = $14650) as the 

GAMS marketing model provides runtime solvers licences for GAMS only, as they 

are embedded in the GAMS architecture and allow only solution of GAMS models 

and only limited manipulation of the solver options (which in most cases will be 

sufficient). This also includes no annual maintenance fees.

More user friendly alternative

An alternative would be to purchase a user friendly integrated package like Ilog’s 

OPL Studio, this will have a considerably lower learning curve for model 

development as it uses an intuitive optimisation programming language with a much 

less knowledge o f computer programming required, reducing typical development 

time from weeks to days. A developmental copy of OPL studio with a development 

licence for CPLEX solver would be required for any deployment in an application. 

The licence needed for the customer would only be a run time licence. An OPL 

development licence must be purchased if  any model development is required (along 

with another CPLEX development licence). Pricing and annual maintenance data is 

shown below in Table A.4.

Table A.4: Associated costs for "more user friendly alternative ” option

Licensing ILOG OPL ILOG CPLEX

Development Studio Intermediate Fixed

Fixed development development

(Maintenance p/a) (Maintenance p/a)

Developer licence £7,000 (18%) £8,400 (18%)

Run time Licence £7,000 (18%) £4,200 (18%)
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Comparison o f  Solver CPLEX and XPRESS

Ilog’s CPLEX and Dash optimization’s Xpress solvers are the market leaders. My 

opinion is that CPLEX is generally faster and may achieve slightly better solution 

quality. However, there is a difference in price with XPRESS being a little cheaper.

A performance comparison by GAMS is shown below in Figure A. 1.

i  -

CPLEX

<3 0 6

0.4

0.2

AH instances
• < » . i .....t. . , i , I

o.t
R e la t iv e  g a p  L o g  R ela tiv e  gap

FigureAl: Relative number o f instances solved during 1800 s vs. relative gap reached 

during this time (all instances are counted) (from www. zamsworld. ors -  benchmarking
exercise).
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