UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder

Trent, S; Fry, JP; Ojarikre, OA; Davies, W; (2014) Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder. Molecular Autism , 5 , Article 21. 10.1186/2040-2392-5-21. Green open access

[thumbnail of Fry_Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder.pdf]
Preview
Text
Fry_Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder.pdf

Download (339kB) | Preview

Abstract

BACKGROUND: The 39,XY*O mouse, which lacks the orthologues of the ADHD and autism candidate genes STS (steroid sulphatase) and ASMT (acetylserotonin O-methyltransferase), exhibits behavioural phenotypes relevant to developmental disorders. The neurobiology underlying these phenotypes is unclear, although there is evidence for serotonergic abnormalities in the striatum and hippocampus. METHODS: Using microarray and quantitative gene expression analyses, and gas chromatography-mass spectrometry, we compared brain gene expression and steroid biochemistry in wildtype (40,XY) and 39,XY*O adult mice to identify non-obvious genetic and endocrine candidates for between-group differences in behaviour and neurochemistry. We also tested whether acute STS inhibition by COUMATE in wildtype (40,XY) adult male mice recapitulated any significant gene expression or biochemical findings from the genetic comparison. Data were analysed by unpaired t-test or Mann Whitney U-test depending on normality, with a single factor of KARYOTYPE. RESULTS: Microarray analysis indicated seven robust gene expression differences between the two groups (Vmn2r86, Sfi1, Pisd-ps1, Tagap1, C1qc, Metap1d, Erdr1); Erdr1 and C1qc expression was significantly reduced in the 39,XY*O striatum and hippocampus, whilst the expression of Dhcr7 (encoding 7-dehydrocholesterol reductase, a modulator of serotonin system development), was only reduced in the 39,XY*O hippocampus. None of the confirmed gene expression changes could be recapitulated by COUMATE administration. We detected ten free, and two sulphated steroids in 40,XY and 39,XY*O brain; surprisingly, the concentrations of all of these were equivalent between groups. CONCLUSIONS: Our data demonstrate that the mutation in 39,XY*O mice: i) directly disrupts expression of the adjacent Erdr1 gene, ii) induces a remarkably limited suite of downstream gene expression changes developmentally, with several of relevance to associated neurobehavioural phenotypes and iii) does not elicit large changes in brain steroid biochemistry. It is possible that individuals with STS/ASMT deficiency exhibit a similarly specific pattern of gene expression changes to the 39,XY*O mouse, and that these contribute towards their abnormal neurobiology. Future work may focus on whether complement pathway function, mitochondrial metabolism and cholesterol biosynthesis pathways are perturbed in such subjects.

Type: Article
Title: Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/2040-2392-5-21
Publisher version: http://dx.doi.org/10.1186/2040-2392-5-21
Language: English
Additional information: Copyright © Trent et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Keywords: Acetylserotonin O-methyltransferase, COUMATE, Steroid sulphatase, 39,XY*O
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Neuro, Physiology and Pharmacology
URI: https://discovery.ucl.ac.uk/id/eprint/1424003
Downloads since deposit
102Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item