Warelow, TP;
Oke, M;
Schoepp-Cothenet, B;
Dahl, JU;
Bruselat, N;
Sivalingam, GN;
Leimkühler, S;
... Santini, JM; + view all
(2013)
The Respiratory Arsenite Oxidase: Structure and the Role of Residues Surrounding the Rieske Cluster.
PLoS One
, 8
(8)
, Article e72535. 10.1371/journal.pone.0072535.
Preview |
PDF
journal.pone.0072535.pdf Available under License : See the attached licence file. Download (745kB) |
Abstract
The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.
Type: | Article |
---|---|
Title: | The Respiratory Arsenite Oxidase: Structure and the Role of Residues Surrounding the Rieske Cluster |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1371/journal.pone.0072535 |
Publisher version: | http://dx.doi.org/10.1371/journal.pone.0072535 |
Language: | English |
Additional information: | © 2013 Warelow et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. PMCID: PMC3758308 |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Structural and Molecular Biology |
URI: | https://discovery.ucl.ac.uk/id/eprint/1416529 |
Archive Staff Only
View Item |