UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

An ultra scale-down study of recovery by centrifugation of human cells for therapy

Delahaye, MT; (2013) An ultra scale-down study of recovery by centrifugation of human cells for therapy. Doctoral thesis (PhD), UCL (University College London). Green open access

Full text not available from this repository.

Abstract

The future success of the cell therapy sector depends largely upon the ability to produce large numbers of high quality and efficacious cells. Within the production of living cells, the product and process become inseparable, thus, the selection and implementation of a large scale commercial production process becomes crucial to the success of the therapy. Traditional cell therapy lifecycles from the discovery phase through to patient administration utilise various unit operations, necessary for expansion, primary recovery, purification and final formulation. It is the induction of variation within cell populations caused whilst processed within these processes that can potentially render the product ineffective and unusable, creating major concern within the healthcare sector. This body of work casts focus upon the recovery of human cells intended for therapeutic use by centrifugation and sediment resuspension, a commonly adopted process which facilitates primary recovery, cell washing and purification processes, as well as the concentration of cells to a final administration specification. With the creation of ultra scale-down techniques coupled with a Design of Experiments approach, the impact of key unit associated parameters such as centrifugation spin time and intensity, along with the technique adopted for sediment resuspension has been characterised for three different human cell lines intended for therapy. A potential developmental roadmap has been created for the production and evaluation of cells for therapies. A range of cell quality attributes were evaluated forming the characterisation criteria, encompassing the analysis of structural integrity, surface marker profiling, cell death induction, cell proliferation capacity, a change in cell size and morphology, the induction of cell signalling in the form of cytokine release and crucially, the potency of the therapy. This facilitated an indepth view into the response of cells when processed, exemplifying the somewhat robust capacity of human cells. This work has aided the formation of a mechanistic hypothesis concerning cell damage as a consequence of the process. Traditional centrifugation protocols operate at the lower extremes of the design space investigated, so characterisation can inform as to the limits of manufacturing at large scale. Critical process effects affecting the recovery of viable cells included (i) the cell preparation with long hold times leading to greater loss during centrifugation and (ii) the method of cell pellet resuspension with the use of few passes at high velocities resulting in greater loss than many passes at low velocity. The mechanisms behind these and other process induced damage are explored.

Type: Thesis (Doctoral)
Qualification: PhD
Title: An ultra scale-down study of recovery by centrifugation of human cells for therapy
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Biochemical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/1396242
Downloads since deposit
1Download
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item