Campbell-Platt, N;
(2013)
Metaplectic cusp forms on the group SL2(Q(i)).
Doctoral thesis , UCL (University College London).
Preview |
PDF
Campbell-Platt Thesis_Final[1].pdf Available under License : See the attached licence file. Download (3MB) |
Abstract
The aim of this thesis is to contribute to the understanding of genuine cusp forms on the group SL2=Q(i), from a computational point of view. We show, via the generalised Eichler-Shimura-Harder isomorphism, that a genuine cusp form of cohomological type exists at level SL2(Z[i]; 4)SL2(Z). We show, by calculating cohomology groups, that such a form exists at weight (2; 2). Finally, we compute the genuine quotient of the Hecke algebra acting on representations of SL2(Q2(i)) containing non-zero SL2(Z2[i]; 4)SL2(Z2)- xed vectors. When such a representation $ corresponds to an unrami ed representation of SL2(Q2(i)), we show that the space of SL2(Z2[i]; 4)SL2(Z2)- xed vectors in $ is a sum of two 1-dimensional components. We determine which 1-dimensional representations arise in this way.
Type: | Thesis (Doctoral) |
---|---|
Title: | Metaplectic cusp forms on the group SL2(Q(i)) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
UCL classification: | UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/1396012 |
Archive Staff Only
View Item |