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Abstract

The aim of this thesis is to contribute to the understanding of genuine cusp

forms on the group SL2/Q(i), from a computational point of view. We show, via

the generalised Eichler-Shimura-Harder isomorphism, that a genuine cusp form of

cohomological type exists at level SL2(Z[i], 4)SL2(Z). We show, by calculating co-

homology groups, that such a form exists at weight (2, 2). Finally, we compute the

genuine quotient of the Hecke algebra acting on representations of SL2(Q2(i)) con-

taining non-zero SL2(Z2[i], 4)SL2(Z2)-fixed vectors. When such a representation $

corresponds to an unramified representation of SL2(Q2(i)), we show that the space of

SL2(Z2[i], 4)SL2(Z2)-fixed vectors in $ is a sum of two 1-dimensional components.

We determine which 1-dimensional representations arise in this way.
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Chapter 0

Introduction

The aim of this thesis is to contribute to the understanding of genuine cusp forms

on SL2/Q(i), from a computational point of view. These so-called “Bianchi modular

forms” are of half-integer weight, and their level is a subgroup of finite index of

SL2(Z[i], 4n)SL2(Z), for some non-zero ideal n ⊆ Z[i], where SL2(Z[i], 4n) is the

group of matrices in SL2(Z[i]) which are congruent to the identity modulo 4n. It is

of interest to determine the (finite) dimension of the space of such forms, for given

level and weight, and in particular, how small n needs to be for the space to be of

positive dimension. In the first chapter of this thesis, we prove that n = Z[i] will

suffice: there is a non-trivial genuine cusp form at level SL2(Z[i], 4)SL2(Z), for some

weight.

In chapter two, we show, computationally, that there is a non-trivial cusp form of

level SL2(Z[i], 4)SL2(Z) at weight (2, 2). Our approach is via the generalised Eichler-

Shimura-Harder isomorphism: we calculate the cohomology of SL2(Z[i], 4)SL2(Z)

with certain non-trivial coefficients. This well-known method involves plugging in-

formation from the fundamental domain for the group SL2(Z[i]) into a spectral se-

quence. We use this method to compute the rational cohomology of some congruence

subgroups, as well as the integral cohomology in some cases.

Jacquet and Langlands [24] re-wrote the theory of integral weight automorphic

forms in the language of representation theory: it was found that an automorphic

form generates the space of a “representation” of the adèle group of GL2, or of SL2.

Gelbart and Piatetski-Shapiro [18,20] generalised this theory to half-integral weight

forms; in this case, however, one obtains a representation of the adèle group of SL2,
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the two-fold cover of SL2. The notion of “level” of a Bianchi modular form extends

to these representations: in the case of the number field Q(i), the level of such a

representation is a compact open subgroup of∏
v finite

SL2(Z[i]v).

The local component of these representations at the even prime, 1 + i, has an action

of the group SL2(Q2(i)). Suppose that its subspace of SL2(Z2[i], 4n)SL2(Z2)-fixed

vectors is not trivial. There is no clear picture of what these representations should

look like. The corresponding question over Q, however, has been solved fairly recently

by Loke and Savin [28].

In the third chapter of this thesis, we completely determine the (compact part of

the) Hecke algebra acting on the even component of a representation. We compute

the action explicitly on a representation when n is the trivial ideal, that is, when

the level is SL2(Z2[i], 4)SL2(Z2) ×
∏

v finite, odd

SL2(Z[i]v). We find that the subspace

of SL2(Z2[i], 4)SL2(Z2)-fixed vectors is two-dimensional: it is the sum of two one-

dimensional eigenspaces for the action of a Hecke operator. We hope this goes a long

way towards a good definition of an “unramified” representation of SL2(Q2(i)).

Background

If d is a square-free, positive integer, let F−d = Q(
√
−d) be an imaginary quadratic

number field with integer ring O−d. Groups of the form GL2(O−d) and SL2(O−d) are

called “Bianchi groups”; living inside GL2(C), they are discrete, and act properly

discontinuously on 3-dimensional real upper-half space H = {(z, r) |z ∈ C, r > 0}.

Explicitly, if g = ( a bc d ) ∈ GL2(C), define

g · (z, r) = (z′, r′)

where

z′ =
(az + b)(cz + d) + ac̄r2

|cz + d|2 + |cr|2
, r′ =

|ad− bc|r
|cz + d|2 + |cr|2

. (0.1)

and |z| = zz̄ is the usual norm in C.
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Let H be the ring of quaternions. It is 4-dimensional as a vector space over R,

with basis 1, i, j, k. If we identify H with a subset of H in the following way:

H −→ H

(z, r) = (x+ iy, r) 7−→ q = x+ iy + jr, (0.2)

then the action (0.1) takes the more aesthetically pleasing form:

g · q = (aq + b)(cq + d)−1. (0.3)

The stabilizer of the point j ∈ H is the group

R× · SU(2) =


d̄ −c̄
c d

∣∣∣∣∣ c, d ∈ C, (c, d) 6= (0, 0)

 .

Now fix d = 1. Then F−1 = Q(i), and O−1 = Z[i]. Suppose that Υ is a finite

index subgroup of the Bianchi group SL2(Z[i]). Let L2(Υ\SL2(C)) denote the space

of complex-valued square integrable functions on Υ\SL2(C); we’ll regard this as a

representation of SL2(C). The space L2(Υ\SL2(C)) is a direct sum of the continuous

spectrum L2
c(Υ\SL2(C)) and the discrete spectrum L2

d(Υ\SL2(C)) [4,21]. By a well-

known result of Gelfand and Piatetski-Shapiro, the latter space is a Hilbert direct

sum of irreducible subspaces with finite multiplicities:

L2
d(Υ\SL2(C)) =

⊕̂
$

m($,Υ)H$ (0.4)

where $ ranges over the set of equivalence classes of irreducible unitary representa-

tions of SL2(C).

Write L2
0(Υ\SL2(C))∞ for the subspace of smooth cuspidal functions in L2

d(Υ\SL2(C)),

and let M be a finite-dimensional, irreducible representation of SL2(C). It was

Borel [4] who established that the map

j : Hq
cts(SL2(C), L2

0(Υ\SL2(C))∞ ⊗M) −→ Hq(Υ,M) (0.5)

is injective for all non-negative integers q. The image of j is called the cuspidal

cohomology and is written Hq
cusp(Υ,M). Results (0.4) and (0.5) can be used to show

that

Hq
cusp(Υ,M) =

⊕
$

m($,Υ)Hq
cts(SL2(C), H∞$ ⊗M) for q = 1, 2
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where H∞$ means the subspace of smooth vectors in H$, and $ ranges over the

irreducible unitary representations of SL2(C). Suppose now that Υ is a congruence

subgroup. Let A be the adèle ring of Q(i), let Af be its finite adèles, and let Kf (Υ)

be the closure of Υ in SL2(Af ). There is an isomorphism

Υ\SL2(C) ∼= SL2(Q(i))\SL2(A)/Kf (Υ).

Let L2(SL2(Q(i))\SL2(A)/Kf (Υ)) be the space of square integrable functions on

SL2(Q(i))\SL2(A)/Kf (Υ). It is the direct sum of a continuous spectrum and a

discrete spectrum L2
d(SL2(Q(i))\SL2(A)/Kf (Υ)). There are results analogous to

(0.4), (0.5), and there is a decomposition, for q = 1, 2,

Hq
cusp(Υ,M) =

⊕
$

m($,Υ)Hq
cts(SL2(C), H∞$∞ ⊗M)⊗HKf (Υ)

$f (0.6)

where the sum is taken over the set of cuspidal automorphic representations $ =

$f ⊗$∞ of SL2(A) of level Kf (Υ). Equation (0.6) is called the generalised Eichler-

Shimura-Harder isomorphism.

Suppose that µ2 is the multiplicative group of square roots of unity in Q(i) ⊂ C.

Consider the central extension

1 −→ µ2 −→ SL2(A) −→ SL2(A) −→ 1 (0.7)

by which the metaplectic group SL2(A) is defined. The extension splits on SL2(Q(i))

and on SL2(C)Kf (Γ
′), where Γ′ is a congruence subgroup of SL2(Z[i]), and it there-

fore splits in two ways on the intersection Γ′ = SL2(Q(i)) ∩ SL2(C)Kf (Γ
′). Let

SL2(C) be the pre-image of SL2(C) in SL2(A); it occurs in an extension

1 −→ µ2 −→ SL2(C) −→ SL2(C) −→ 1. (0.8)

Dividing one splitting of (0.7) by the other on Γ′, we get a homomorphism

κ : Γ′ −→ µ2

and a bijection between Γ′ and a subgroup Γ̂′ of SL2(C). We can regard κ as a

one-dimensional Q-representation κQ of Γ′.

In this thesis, we shall be concerned with “genuine” objects on SL2(A). We say

that a function φ on SL2(A) is genuine if φ(ξg) = ξφ(g) for all g ∈ SL2(A) and for
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all ξ ∈ µ2 (note that µ2 is contained in the centre of SL2(A)). In particular, if V is a

complex vector space, an irreducible representation ρ̄ : SL2(A)→ GL(V ) is genuine

if the subgroup µ2 acts faithfully.

We shall write ŜL2(Q(i)) (resp. K̂f (Γ
′)) for the lift of the subgroup SL2(Q(i))

(resp. Kf (Γ
′)) to SL2(A). Denote by L2(ŜL2(Q(i))\SL2(A)/K̂f (Γ

′)) the space of

genuine, square integrable functions on ŜL2(Q(i))\SL2(A)/K̂f (Γ
′); it has a contin-

uous and a discrete part. The bijection

Γ̂′\SL2(C) ∼= ŜL2(Q(i))\SL2(A)/K̂f (Γ
′)

allows us to replace SL2(C) with SL2(C) in (0.4) and (0.5), and we obtain

Hq
cusp(Γ′, κQ ⊗M) =

⊕
$

m($,Γ′)Hq
cts(SL2(C), H

∞
$∞ ⊗ κQ ⊗M)⊗HK̂f (Γ′)

$f
(0.9)

for q = 1, 2, where the sum is taken over the set of genuine, cuspidal automorphic

representations $ = $f ⊗ $∞ of SL2(A). The expression (0.9) is the metaplectic

version of the generalised Eichler-Shimura-Harder isomorphism (0.6).

Computer-aided calculation

Many of the computations in this thesis are large. Notably, some cohomology

calculations and the determination of the genuine quotient of the Hecke algebra in

Chapter three. To mitigate the risk of human error, we have used Sage to carry out

most of this work. We have chosen to explain the algorithm in the body of the text

where we think necessary, and have otherwise relegated the code to the appendices

so as not to disrupt the discussion.



Chapter 1

Existence of a genuine cusp form

In this chapter, we shall show that a genuine cusp form, of level one and of

cohomological type, exists on the group SL2/Q(i) (Corollary 1.4.17). In particular,

there is a non-negative integer k such that

H2
cusp(Γ′, κQ ⊗

C
Ek,k(C)) 6= 0.

The notation Ek,k(C) shall be defined below.

Our method of proof rests on a theorem of Flicker [17], who formulates his result

in terms of the group GL2. Despite the fact that we shall only apply Flicker’s result

to the group SL2, it will be necessary to give the background for the larger group

GL2. For this reason, the reader is warned that the notation in this chapter is

cumbersome, and many of the definitions may seem superfluous.

Sections 1.1 through to 1.4.2 form the necessary background: Sections 1.1 and

1.2 define the local and global metaplectic groups, on which these forms live. In

Propositions 1.2.3 and 1.2.7, we give an explicit description of the homomorphism

κ : Γ′ −→ µ2

which is of central importance in this thesis.

In Section 1.3, we sketch the interpretation of integral and half-integral weight

modular forms as functions on the group GL2(A) and its two-fold cover. In Sections

1.4.1 through to 1.4.2, we develop the local and global representation theory needed

to define a cuspidal automorphic representation, and we describe, in particular, those

representations of GL2(C) which have cohomology (Section 1.4.1.2). Finally, in Sec-
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tion 1.4.3, we give a modification of Flicker’s correspondence (Definition 1.4.19) which

enables us to derive our main result.

1.1 The local metaplectic groups

Once and for all, fix F = F−1 to be the imaginary quadratic field Q(i) and

O = O−1 to be its ring of integers Z[i]. We shall denote by v a place of F , and

by Fv the completion of F at v. In particular, if v is the infinite place, then Fv is

archimedean, and Fv = C. If v is finite, then Fv is non-archimedean, and is a finite

algebraic extension of the p-adic field Qp. There is a unique even place of F , namely

(1 + i); by an abuse of notation, we shall write π both for the place, and the prime

in O. If Fv is non-archimedean, let Ov denote the ring of integers of Fv and O×v its

group of units. If x is an element of F×v , we shall define its order by x = uvordv(x) for

a unit u ∈ O×v .

Throughout the thesis, the group µ2 = {±1} ⊂ F will be the multiplicative

group of square roots of 1; the algebraic group GL2 will be denoted by G until

further notice. If R is a ring, we shall denote the R points of G by G(R), unless

R = Fv, in which case we shall denote these points by Gv.

In general, if H is a (multiplicative) locally compact group, a two-cocycle σ on

H is a Borel-measurable map σ : H ×H → µ2 with the properties

σ(h1, h2h3)σ(h2, h3) = σ(h1h2, h3)σ(h1, h2) and σ(1, h) = σ(h, 1) = 1 (1.1)

We call the cocycle trivial if there is a map s : H → µ2 such that

σ(h1, h2) = s(h1)s(h2)s(h1h2)−1 for all h1, h2 ∈ H.

In this thesis, we shall be concerned with a specific two-cocycle on G (Theorem

1.1.2 below) whose formula was given by Kubota [25]. Such a cocycle σ determines

an exact sequence of groups

1 −→ µ2 −→ H −→ H −→ 1 (1.2)

where H is realised as the set of pairs {h, ξ} with h ∈ H and ξ ∈ µ2 with multipli-

cation given by

{h1, ξ1}{h2, ξ2} = {h1h2, ξ1ξ2σ(h1, h2)}
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The extension is called central because ξ 7→ {1, ξ} is an injective homomorphism

from µ2 to the centre of H. The group H has a natural locally compact topology

and the map H → H is a covering map.

If K is any subgroup of H, K will denote its full inverse image in H. We say

that the extension (1.2) splits over K if there is a map s : K → µ2 which satisfies

σ(k1, k2) = s(k1)s(k2)s(k1k2)−1 for all k1, k2 ∈ K. Equivalently, K is the direct

product K = K̂ × µ2 for some subgroup K̂ ⊂ H isomorphic to K. The extension

(1.2) is called trivial if it splits over H itself. Finally, we shall write K
n

for the

inverse image of Kn in H, and not for the set of n-th powers of elements of K.

The quadratic Hilbert symbol ( , )v is a symmetric bilinear map from F×v ×F×v to

µ2 which takes (x, y)v to 1 iff x in F×v is a norm from Fv(
√
y). In particular, (x, y)v

is identically 1 if y is a square. Thus ( , )v is trivial on (F×v )2 × (F×v )2 for every Fv

and trivial on F×v × F×v itself if Fv = C.

Some properties of the quadratic Hilbert symbol which we shall use repeatedly

are collected below.

Proposition 1.1.1. 1. For each Fv, ( , )v satisfies

(a, b)v = (a,−ab)v = (a, (1− a)b)v, (1.3)

and

(a, b)v = (−ab, a+ b)v; (1.4)

2. If v is odd, (u, u′)v is identically 1 on O×v × O×v ;

3. If v = π, and u in Oπ is such that u ≡ 1 (mod π4), then (u, u′)π is identically

1 on O×π ;

4. If v = π, and a ≡ a′ (mod π5) for a ∈ O×π , then (a, b)π = (a′, b)π for all b ∈ Fπ;

5. If a, b ∈ F×, then ∏
v

(a, b)v = 1, (1.5)

the product being over all places v of F ;
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6. If v lies above the rational prime p, and if a ∈ Q×p , then

(a, b)v = (a,N(b))p

where (·, ·)p denotes the Hilbert symbol in Qp, and N is the Norm map N :

F×v → Q×p .

Parts (2) and (3) of Proposition 1.1.1 can be found in O’Meara [31, § 63] and

Artin-Tate [1, Chapter 12]. Part (4) is a consequence of Hensel’s Lemma for complete

local rings: if a ≡ 1 (mod π5), then a is a square in Fπ. Parts (1), (5) and (6) can be

found in [32, pp. 101–102].

Now suppose h = ( a bc d ) and set x(h) equal to c if c 6= 0 and equal to d if c = 0.

Theorem 1.1.2 (Kubota). The map ωv : SL2(Fv)× SL2(Fv)→ µ2 defined by

ωv(h1, h2) = (x(h1), x(h2))v(−x(h1)x(h2), x(h1h2))v (1.6)

is a two-cocycle on SL2(Fv). Moreover, this cocycle is trivial if and only if Fv = C.

The exact sequence of locally compact groups determined by ωv is

1 −→ µ2 −→ SL2(Fv) −→ SL2(Fv) −→ 1.

The group SL2(Fv) is also called a two-fold cover of SL2(Fv). The first non-trivial

two-fold cover of SL2(k) for k a non-archimedean field was given by Weil [39] and

named the “metaplectic group”.

There is an extension of ωv to Gv: if g = ( a bc d ) belongs to Gv, write g =(
1 0
0 det(g)

)
p(g) where

p(g) =

 a b

c
det(g)

d
det(g)

 ∈ SL2(Fv) (1.7)

For g1, g2 in Gv, define

σv(g1, g2) = ωv(p(g1)det(g2), p(g2))v(det(g2), p(g1)) (1.8)

where

hy =

1 0

0 y

−1

h

1 0

0 y

 (1.9)

and
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v(y, h) =

1 if c 6= 0

(y, d)v otherwise

(1.10)

if h =

a b

c d

.

Proposition 1.1.3. The cocycle σv determines a non-trivial central extension of Gv

by µ2 whose restriction to SL2(Fv)× SL2(Fv) is ωv.

For a proof, see [20].

The group Gv is thus realised as the set of pairs {g, ξ} with multiplication given

by {g1, ξ1}{g2, ξ2} = {g1g2, ξ1ξ2σv(g1, g2)}.

Let Tv, Nv and Bv denote the following subgroups of Gv:

Tv =


a1 0

0 a2

 ∣∣∣∣∣ ai ∈ F×v
 ;

Nv =


1 b

0 1

 ∣∣∣∣∣ b ∈ Fv
 ;

Bv =


a1 b

0 a2

 ∣∣∣∣∣ ai ∈ F×v , b ∈ Fv
 = NvTv = TvNv.

Further, let Kv be the maximal compact subgroup of Gv (U(2) if Fv = C, and

G(Ov) otherwise). In the case that v is the infinite place, write TC, NC and BC for

Tv, Nv and Bv respectively, and let ZC denote the centre of GC.

Remark 1.1.1. The reader is warned that we shall use the same notation (Tv, Nv, Bv, Kv)

when we mean the corresponding subgroups of SL2(Fv). We hope any ambiguity shall

be eliminated by the context.

Note that the ideals (π4) and (4) in Oπ are equal. If a ∈ Oπ, ã shall denote its

reduction modulo (4). Define a compact open subgroup Kπ(4) of Gπ by

Kπ(4) =


a b

c d

∣∣∣∣∣ ã, b̃, c̃, d̃ ∈ Z/4Z, ad− bc ∈ O×π

 , (1.11)

and for any v, consider the extension

1 −→ µ2 −→ Gv −→ Gv −→ 1. (1.12)
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Proposition 1.1.4 (Kubota). The extension (1.12) splits over Kv when v is finite

and odd, and splits over Kπ(4) when v = π. More precisely, for any finite v, if

g =

a b

c d

 in Gv, set

κv

a b

c d

 =

(c, d det(g))v if cd 6= 0 and ordv(c) is odd

1 otherwise

(1.13)

Then, for all h1, h2 ∈ Kv or Kπ(4),

σv(h1, h2) = κv(h1)κv(h2)κv(h1h2)−1 (1.14)

Proof. When v is finite and odd, this is Kubota’s result [26, Theorem 2]. When

v is even, Kubota’s result applies to the group

G(Oπ, 4) :=

γ ∈ G(Oπ)

∣∣∣∣∣ γ ≡
1 0

0 1

 (mod 4)

 .

Observe that Kπ(4) = G(Oπ, 4)G(Z2). Hence, to prove the proposition, we must

show that when v = π, the extension (1.12) splits on the group G(Z2).

Suppose that g1, g2 ∈ G(Z2). Then both σπ(g1, g2) and κπ(g1)κπ(g2)κπ(g1g2)−1

are a product of Hilbert symbols of the form

(x, y)π for some x, y ∈ Z2.

But since x, y ∈ Z2, each of these Hilbert symbols is 1 as a consequence of part (6)

of Proposition 1.1.1. Therefore, both κπ(g1)κπ(g2)κπ(g1g2)−1 and σπ(g1, g2) are 1, so

they are equal.

2

Definition 1.1.1. When Fv = C, let κv(g) be the function which is identically 1 on

Gv. If Fv is non-archimedean, let κv be as in (1.13), and in general, let βv(g1, g2)

denote the 2-cocycle βv(g1, g2) = σv(g1, g2)κv(g1)κv(g2)κv(g1g2)−1.

The cocycle βv determines an equivalent extension to that determined by σv, but

βv has the added advantage that its restriction to Kv × Kv (respectively, Kπ(4) ×

Kπ(4)) is identically 1, so Kv (resp. Kπ(4)) lifts to a subgroup of Gv via k 7→ {k, 1},

which we shall denote by K̂v (resp. K̂π(4)).
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We collect here some properties of the cocycle βv and the extension (1.12) which

will be useful later.

Lemma 1.1.5. Let

gi =

ai bi

0 ci

 ∈ Bv, i = 1, 2

Then βv(g1, g2) = (a1, c2)v

Proof. Observe thatai bi

0 ci

 =

1 0

0 aici

ai bi

0 a−1
i


=

1 0

0 det(gi)

ai bi

0 a−1
i


It follows that

σv(g1, g2) = ωv

a1 a2c2b1

0 a−1
1

 ,

a2 b2

0 a−1
2

 v

a2c2,

a1 b1

0 a−1
1


= (a−1

1 , a−1
2 )v(a

−1
1 a−1

2 , a−1
1 )v(a

−1
1 a−1

2 , a−1
2 )v(a2c2, a

−1
1 )v

= (a1, c2)v by (1.3).

The proof is concluded by observing that

κv

a b

0 c

 = 1 for all

a b

0 c

 ∈ Bv.

2

Corollary 1.1.6. The extension (1.12) splits on the subgroups Nv and T 2
v , where

T 2
v =


a1 0

0 a2

∣∣∣∣∣ ai ∈ F×2
v

 .

It splits uniquely on Nv and canonically on T 2
v .

Corollary 1.1.7. The centre of Gv is

Z(Gv) =



z 0

0 z

 , ξ


∣∣∣∣∣ z ∈ F×2

v , ξ ∈ µ2

 .
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We refer to [20, § 2.1] for the proof.

Remark 1.1.2. The group T v ⊂ Gv is not abelian. However, when T v is considered

as a subgroup of SL2(Fv), it is abelian. On the other hand, T
2

v ⊂ Gv is abelian. We

shall use these facts in Chapter 3.

1.2 The global metaplectic group

Let A be the adèle ring of F , and A× its group of idèles, so that GA := GL2(A)

is the restricted direct product
∏
v

′ Gv with respect to the subgroups Kv. We write

Af for
∏
v<∞

′ Fv, and G(Af ) for
∏
v<∞

′ Gv.

According to Proposition 1.1.4, if g = (gv), g
′ = (g′v) ∈ GA, then βv(gv, g

′
v) = 1 for

almost every v. Thus we can define βA(g, g′) =
∏
v

βv(gv, g
′
v) which is a two-cocycle

giving rise to the extension

1 −→ µ2 −→ GA −→ GA −→ 1. (1.15)

Note that GA is not a restricted direct product of the local groups Gv [18], but

rather a quotient of it, by the subgroup{∏
v

εv ∈
∏
v

(µ2)v

∣∣∣∣∣ εv = 1 for all but an even number of v

}
.

Consider the following subgroups of GA:

K ′f := Kπ(4)×
∏

v<∞,odd

Kv

GF := GL2(F ) embedded diagonally.

Proposition 1.2.1. The extension (1.15) splits on the subgroup K ′f of GA via the

map kf 7→ {kf , 1}.

Proof. This is just Proposition 1.1.4. 2

In line with the notation above, we’ll denote this subgroup of GA by K̂ ′f .

Proposition 1.2.2. For h ∈ GF , let

κA(h) =
∏
v

κv(h) (1.16)
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the product extending over all (finite) primes of F . Then the map

h 7→ {h, κA(h)} (1.17)

provides an isomorphism between GF and a subgroup ĜF of GA.

Proof. First note that if h = ( a bc d ) ∈ GF , then c is a unit for almost all v, and

consequently κv(h) = 1 for almost all v. Therefore, the product appearing in (1.16)

is well-defined.

To prove the proposition it will suffice to show that κA(h1)κA(h2)βA(h1, h2) =

κA(h1h2) for all h1, h2 ∈ GF . Indeed, for such h1, h2, and for almost all v, all of the

entries of h1, h2 are units, so σv(h1, h2) = 1 by (2) of Proposition 1.1.1. For the

remaining v, we have

σv(h1, h2) = (r1, r2)v(r3, r4)v

for r1, r2, r3, r4 in F , and so by (5) of Proposition 1.1.1,
∏
v

σv(h1, h2) = 1. Thus we’ve

shown that

κA(h1)κA(h2)βA(h1, h2) = κA(h1h2). (1.18)

2

Proposition 1.2.2 allows us to make sense out of the space ĜF\GA.

Consider now the congruence subgroup Γ(4) of GF defined by

Γ(4) =

γ ∈ G(O)

∣∣∣∣∣ γ ≡
1 0

0 1

 (mod 4)

 ,

and observe that

Γ(4)G(Z) = GF ∩G(C)K ′f .

We shall examine the splitting κA on Γ(4)G(Z).

Let a, b ∈ F× such that b is relatively prime to a and 2. Put (b) =
∏
v

vordv(b), the

product extending over all places v of F . Of course, for almost all v, ordv(b) = 0.

The v occuring in the product which satisfy ordv(b) 6= 0 will be relatively prime to

a and 2. Define the local quadratic power residue symbol
(
a
v

)
to be 1 if a = δ2 for

some δ ∈ Ov and −1 otherwise. The (global) quadratic power residue symbol
(
a
b

)
F

is defined to be the product (a
b

)
F

=
∏

v<∞, odd

(a
v

)ordv(b)

(1.19)
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We have

Proposition 1.2.3 (Kubota). Define a function

κ : Γ(4) −→ µ2

κ

a b

c d

 =
( c
d

)
F

Then

κ(γ) = κA(γ).

This is one of the main results of [26]. In fact, the proof of Proposition 1.2.3 rests

on the fact that (a
b

)
F

=
∏
v|a

(a, b)v.

Corollary 1.2.4. The function κ : Γ(4) −→ µ2 is a character.

For a proof, see [20, p. 27].

We shall collect some properties of the quadratic power residue symbol here for

later use.

Lemma 1.2.5 (Properties of the quadratic power residue symbol). Let ( ) := ( )F

denote the quadratic power residue symbol for the field F and let b, b′ ∈ O be odd and

relatively prime (respectively) to a, a′ ∈ O. Then,

1. (
aa′

b

)
=
(a
b

)(a′
b

)
. In particular,

(
a2

b

)
= 1,

2. ( a
bb′

)
=
(a
b

)( a
b′

)
,

3. If a ≡ a′ (mod b) then (a
b

)
=

(
a′

b

)
,

4. If b ≡ b′ (mod a) and 4|a then (a
b

)
=
( a
b′

)
,
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5. If aa′ ≡ 1 (mod b) then (a
b

)
=

(
a′

b

)
,

6. If, additionally, b is in Q, then(a
b

)
=

(
N(a)

b

)
Q
,

where N : F → Q is the norm map, and ( ·· )Q is the quadratic residue symbol

in Q,

7. If a and b are in Q, then (a
b

)
= 1,

8. If a, b ∈ O are coprime, and if b is prime and odd, then(a
b

)
≡ a

N(b)−1
2 (mod b).

See [27, p. 112] for parts (1), (3) and (6), and [32, p. 100] for parts (2), (5) and

(8). We shall prove part (7). By part (6), if b ∈ Q, then(a
b

)
=

(
N(a)

b

)
Q
.

However, since a ∈ Q, we have N(a) = a2, and(
a2

b

)
Q

= 1.

Lemma 1.2.6 (Quadratic reciprocity law). Let a = a1 + ia2, b = b1 + ib2 be two

primes in O which are relatively prime and congruent to 1 (mod 2 + 2i). Then,(a
b

)( b
a

)−1

= (−1)
Na−1

2
Nb−1

2

In particular, if either a or b is ≡ 1 (mod 4), then(a
b

)
=

(
b

a

)
.

The supplementary laws are given by:(
i

a

)
= (−1)

a21+a
2
2−1

4(
1 + i

a

)
= (−1)

a1−a2−a
2
2−1

4
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See [27, p. 195] for the analogous result for the quartic residue symbol in F (the

quadratic residue symbol is the square of the quartic residue symbol in F ).

The function κ has an extension to Γ′ = Γ(4)G(Z) which we shall also call κ.

Proposition 1.2.7. Define

κ : Γ′ −→ µ2 by

κ(γh) = κ(γ) where γ ∈ Γ(4), h ∈ G(Z)

Then κ is a character of Γ′.

Proof. Observe that part (7) of Lemma 1.2.5 says that κ is trivial on G(Z). If

γ1, γ2 ∈ Γ(4), h1, h2 ∈ G(Z), and γ1h1 = γ2h2 then κ(γ−1
2 γ1) = κ(h2h

−1
1 ) = 1 so

κ(γ1) = κ(γ2). Hence κ is well-defined.

We must show that κ(γ1h1γ2h2) = κ(γ1)κ(γ2) for all γ1, γ2 ∈ Γ(4) and all h1, h2 ∈

G(Z). But, κ(γ1h1γ2h2) = κ(γ1(h1γ2h
−1
1 )h1h2) = κ(γ1)κ(h1γ2h

−1
1 ), so it will suffice

to show that

κ(hγh−1) = κ(γ) for all γ ∈ Γ(4) and all h in a set of generators for G(Z).

A set of generators for G(Z) is given by [6]:
0 1

1 0

 ,

−1 0

0 1

 ,

1 1

0 1

 .

However, 0 1

1 0

 =

−1 0

0 1

0 −1

1 0

 ,

so a different set of generators is:
0 −1

1 0

 ,

−1 0

0 1

 ,

1 1

0 1

 .

Let h1 = ( 0 −1
1 0 ). Then

κ(h1γh
−1
1 ) = κ

0 −1

1 0

a b

c d

 0 1

−1 0

 = κ

d c

b a

 .
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Write ad − bc = iδ for some δ ∈ {0, 1, 2, 3}. Suppose that δ = 0 or 2. Then

b ≡ ±c−1 (mod a), and using (1), (2), (3) and (5) of Lemma 1.2.5, we have(
b

a

)
=

(
−c
a

)
=
( c
a

)
=
( c

ad

)( c
d

)
. (1.20)

Thus,

κ(h1γh
−1
1 ) = κ(γ)⇔

( c

ad

)
= 1.

Any element x ∈ O has a factorization x = παiβx′ for x′ ≡ 1 (mod π3), where

α ≥ 0, β ∈ {0, 1, 2, 3} (this is essentially due to the fact that the homomorphism

O× → (O/π3)× is bijective [16]). If we write c = παiβc′ then since c ≡ 0 (mod 4), we

have α ≥ 4. Now, ( c

ad

)
=
(π
a

)(π
d

)( i
a

)(
i

d

)(
c′

ad

)
.

Put a = a1 + a2i, d = d1 + d2i. The congruence a ≡ d ≡ 1 (mod 4), implies that

a1 ≡ d1 ≡ 1 (mod 4) and a2 ≡ d2 ≡ 0 (mod 4). By Lemma 1.2.6, we have(
i

a

)
= (−1)

a21+a
2
2−1

4

= 1 since a2
1 + a2

2 − 1 ≡ 0 (mod 8) (1.21)

= (−1)
d21+d

2
2−1

4 since d2
1 + d2

2 − 1 ≡ 0 (mod 8)

=

(
i

d

)
Similarly, (π

a

)
= (−1)

a1−a2−a
2
2−1

4

= 1 since a1 − a2 − a2
2 − 1 ≡ 0 (mod 8)

= (−1)
d1−d2−d

2
2−1

4 since d1 − d2 − d2
2 − 1 ≡ 0 (mod 8)

=
(π
d

)
Hence by (1) of Lemma 1.2.5, and the fact that ad ≡ 1 (mod 4),( c

ad

)
=

(
c′

ad

)
=

(
ad

c′

)
(1.22)

Since ad ≡ ±1 (mod c′), (
ad

c′

)
=

(
1

c′

)
= 1. (1.23)
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Thus we have shown that when δ = 0 or 2, by (1.20), (1.22) and (1.23), that

κ(h1γh
−1
1 ) = κ(γ).

If δ = 1 or 3, b ≡ ∓ ic−1, and again, using (1), (2), (3) and (5) of Lemma 1.2.5,

we have (
b

a

)
=

(
ic

a

)
=

(
ic

ad

)(
ic

d

)
.

Now,

κ(h1γh
−1
1 ) = κ(γ)⇔

(
ic

ad

)(
i

d

)
= 1.

However, (
ic

ad

)(
i

d

)
=

(
i

a

)( c

ad

)
so by the case above with δ = 0, 2 and (1.21), we have our result.

Let h2 = ( −1 0
0 1 ). Then if γ = ( a bc d ) ∈ Γ(4),

h2γh
−1
2 =

−1 0

0 1

a b

c d

−1 0

0 1


=

 a −b

−c d

 .

We are required to show that (
−c
d

)
=
( c
d

)
,

but this is clear.

If h3 = ( 1 1
0 1 ) then

κ

1 1

0 1

a b

c d

1 −1

0 1

 =

(
c

d− c

)
,

but c ≡ 0 (mod 4) hence(
c

d− c

)
=
( c
d

)
by (4) of Lemma 1.2.5.

2

When convenient, we shall think of κ as a 1-dimensional representation of the

group Γ′. When we require this representation to be rational, we shall denote it by

κQ; explicitly,

κQ : Γ′ −→ GL1(Q).
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1.3 Modular forms over Q(i)

There are several ways to view modular forms on G := GL2 when the base field

is imaginary quadratic. For example, they can be described as functions on upper-

half space H; functions on the adèle group GA; “representations” of the group GA;

and cohomology classes of congruence subgroups of SL2(O). In this thesis, we shall

content ourselves with the description of modular forms both as “representations”

of the group GA, and, via the generalised Eichler-Shimura-Harder isomorphism, as

cohomology classes.

We shall, however, give a rather loose interpretation of them as functions on the

adèle group GA since we feel this description highlights some of the salient points of

the theory.

Half-integral weight forms have similar interpretations, except the group GA is

replaced with its two-fold cover GA. We give the same treatment for half-integral

weight forms.

1.3.1 Integral weight forms

The material in this subsection is based on Bygott’s thesis [9] and Kudla’s paper

[3, Chapter 7]; we refer the reader there for much more detail. If H is a locally

compact multiplicative group, by a quasi-character χ of H we mean a continuous

homomorphism of groups χ : H → C×, and by a unitary character we mean a quasi-

character whose image is contained in S1, the set of complex numbers of norm 1.

Let Z(GA) denote the centre of GA; observe that

Z(GA)/(Z(GA) ∩GF ) ∼= A×/F×.

Let ψ : A×/F× → C× be a quasi-character, whose restriction to F×∞ = C×, denoted

ψ∞, is trivial. The space A0(ψ) of cuspidal automorphic forms on GA with cen-

tral character ψ is the space of functions Φ : GA → C(3) subject to the following

conditions:

(A) Φ(γg) = Φ(g) for all γ ∈ GF and g ∈ GA;

(B) Φ(gζ) = Φ(g)ψ(det(ζ)) for all g ∈ GA and all ζ ∈ Z(GA);
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(C) Φ(gk) = Φ(g) for all g ∈ GA and k ∈ Lf , a compact open subgroup of G(Af );

(D) The induced function Φ∞ : GC → C(3) is smooth, and is an eigenfunction of the

Casimir elements ∆,∆′;

(E) Φ is slowly increasing;

(F) The space spanned by the right translates of Φ by elements of K∞ is finite-

dimensional (we say that Φ is right K∞-finite);

(G) Φ satisfies the cuspidal condition:

∫
A/F

Φ

1 b

0 1

 g

 db = 0 for almost all g ∈ GA.

Condition (D) has the following meaning. Let g = gl2(C) ⊕ gl2(C) be the com-

plexified Lie algebra of GC. If Φ ∈ A0(ψ), then g acts on the induced function Φ∞

by right translation, and this action extends to the universal enveloping algebra of g.

The centre of the universal enveloping algebra is generated by the centre of g and the

Casimir elements ∆,∆′, and the centre of g acts trivially by (B) and by our assump-

tion that ψ∞ is trivial on C×. For the definition of (E), we refer to [3, Chapter 7].

1.3.2 Half-integral weight forms

Recall the global extension (1.15)

1 −→ µ2 −→ GA −→ GA −→ 1

defining GA. This extension splits over K ′f (Proposition 1.2.1). Observe that

Z(GA)/(Z(GA) ∩ ĜF ) ∼= A×2/F×2 ⊕ µ2;

let ψ : Z(GA)/(Z(GA) ∩ ĜF )→ C× be a genuine quasi-character: that is,

ψ(ξg) = ξψ(g) for all g ∈ Z(GA), ξ ∈ µ2.

The space A0(ψ) of genuine cuspidal automorphic forms on GA with central char-

acter ψ is the space of functions Φ : GA → C(3) subject to the following conditions:
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(A′) Φ(γg) = Φ(g) for all γ ∈ ĜF and g ∈ GA;

(B′) Φ(gζ) = Φ(g)ψ(ζ) for all g ∈ GA and all ζ ∈ Z(GA);

(C′) Φ(gk) = Φ(g) for all g ∈ GA and k ∈ L′f ⊆ K̂ ′f , a compact open subgroup of

G(Af );

(D′) The induced function Φ∞ : GC → C(3) is genuine, smooth when restricted to

GC, and is an eigenfunction of the Casimir elements ∆,∆′;

(E′) Φ is slowly increasing;

(F′) The space spanned by the right translates of Φ by elements of K∞ is finite-

dimensional (we say that Φ is right K∞-finite);

(G′) Φ satisfies the cuspidal condition:

∫
A/F

Φ


̂1 b

0 1

g
 db = 0 for almost all g ∈ GA,

where (̂ 1 b
0 1 ) is the image of ( 1 b

0 1 ) under the unique splitting of (1.15) on the

group {( 1 ∗
0 1 )}.

Remark 1.3.1. There is a function fΦ : H→ C(3) associated to each such Φ. If L′f =

K̂ ′f in (C′) above, then one can show that fΦ must have the following transformation

property:

fΦ(γτ) = κ(γ)fΦ(τ) for all γ ∈ Γ′, τ ∈ H.

1.4 A modification of Flicker’s correspon-

dence

In 1973, in his seminal paper [36], Shimura associated to each classical Q-cusp

form of half-integer weight k
2
, (odd k ≥ 3) and Dirichlet character χ, a modular form

of weight k−1 and character χ2. In a series of open-ended questions at the end of his

report, Shimura suggested that his correspondence might lend itself to be understood

via representation theory. In a sequence of papers, Gelbart and Piatetski-Shapiro [18]
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did just this. They showed that a cusp form of half-integer weight could be thought

of as a “genuine automorphic representation” of GA. Moreover, their results were

valid over any number field. It was Flicker who, in 1980, gave a comprehensive

correspondence: not only for all “automorphic representations” of GA (not just the

cuspidal ones), but also for n-fold covering groups of GL2. His work is based on

character theory: he uses the Selberg trace formula for both GA and its cover GA.

We won’t delve into the details of his approach; we’ll simply collect the representation

theory we require and then describe the correspondence.

1.4.1 Local representation theory

Let v be a finite or infinite place, and recall that we’ve used the notation Gv

for GL2(Fv). The group Gv is a locally compact Hausdorff space, and it is totally

disconnected (such groups are of ‘td-type’ in the terminology of [11]). By a repre-

sentation of Gv, we shall mean a pair (ρ, V ) where V is a complex vector space, and

ρ is a homomorphism from Gv to the invertible linear maps in V ; the representation

shall be called continuous if the map ρ is continuous. Our notation for (ρ, V ) shall

vary between ρ, V or the pair (ρ, V ) according to what best suits the situation; we

hope this does not cause confusion. If H is a subgroup of Gv, we’ll write V H for the

subspace of vectors v ∈ V which satisfy ρ(h)(v) = v for all h ∈ H.

We call (ρ, V ) uniterisable if there exists a positive definite Hermitian form on

V which is preserved by ρ(g) for all g ∈ Gv . One can then take the completion

of V with respect to the inner product defined by the form to obtain a unitary

representation of Gv on a Hilbert space H.

If H is a group which contains µ2 in the centre, recall that by a genuine repre-

sentation of H, we mean a representation (ρ, V ) such that

ρ(ξh) = ξρ(h) for all ξ ∈ µ2, h ∈ H.

1.4.1.1 The archimedean place

Let (ρ, V ) be a continuous representation of GC on a Hilbert space V . Such a

representation is called irreducible if it has no non-trivial closed subrepresentation;
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it is called unitary if its restriction to U(2) is a Hilbert direct sum of irreducible

representations, each of which has finite multiplicity. We want to restrict the class

of representations in what follows.

Definition 1.4.1. The representation (ρ, V ) is called admissible if its restriction to

SU(2) decomposes into finite-dimensional representations with finite multiplicities.

Recall the subgroups TC, NC, BC of GC. Let (χ1, χ2) be a pair of quasi-characters

C× → C×. The pair (χ1, χ2) defines a character of the (abelian) group TC if we put

TC −→ C×a1 0

0 a2

 7−→ χ1(a1)χ2(a2).

Let (τ,C) be the 1-dimensional complex representation of the group BC given by:

τ

a1 b

0 a2

 = |a1a
−1
2 |

1
2
C χ1(a1)χ2(a2).

Consider the vector space B(χ1, χ2) of measurable functions f on GC which satisfy

f (bg) = τ(b)f(g) for all b ∈ BC, and∫
SU(2)

|f(k)|2C dk <∞.

By the Iwasawa decomposition, GC = BCSU(2), and so the functions f are com-

pletely determined by their restriction to SU(2).

The group GC acts on these functions via (fg)(y) = f(gy) and therefore B(χ1, χ2)

is the space of a representation of GC induced from that of (τ,C). For any choice

of quasi-characters (χ1, χ2), we denote by ρ(χ1, χ2) the representation of GC whose

space is B(χ1, χ2).

The representations ρ(χ1, χ2) are admissible, and in fact, every irreducible ad-

missible representation of GC is a subquotient of some such ρ(χ1, χ2).

Schur’s Lemma [8] implies that if (ρ, V ) is any irreducible admissible representa-

tion of the locally compact totally disconnected group Gv, then the centre F×v of Gv

acts by scalars on V . That is, there is a quasi-character χ : F×v → C×, called the
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central character of (ρ, V ), such that

ρ

z 0

0 z

 (v) = χ(z)(v) for all z ∈ F×v and v ∈ V.

The central character is called odd (resp. even) if χ(−1) = −1 (resp. χ(−1) = 1),

and the representation (ρ, V ) is called odd (resp. even) if its central character is

odd (resp. even). The centre of GC is the set of scalar matrices ZC = {( a 0
0 a ) :

a ∈ C×} ⊂ BC and therefore the central character of ρ(χ1, χ2) is easily seen to be

χ(( a 0
0 a )) = χ1(a)χ2(a).

Let B(ρn) be the subspace of B(χ1, χ2) which transforms according to the unique

representation of SU(2) of dimension n+ 1. Recall that if z ∈ C, its complex conju-

gate is denoted by z̄. See [20] and the references therein for proof of the following:

Proposition 1.4.1 (Jacquet-Langlands). 1. ρ(χ1, χ2) is irreducible if χ1(a1)χ2(a2) 6=

(a1a
−1
2 )±p(ā1ā

−1
2 )±q where p, q ∈ Z≥1. If ρ(χ1, χ2) is irreducible, it will be de-

noted by $∞(χ1, χ2).

2. If χ1(a1)χ2(a2) = (a1a
−1
2 )p(ā1ā

−1
2 )q with p, q ≥ 1, let

Bs(χ1, χ2) =
∑

n≥p+q,n≡p+q (2)

B(ρn).

Then Bs(χ1, χ2) is the only proper invariant subspace of B(χ1, χ2). Let σ∞(χ1, χ2)

denote the representation of GC whose space is Bs(χ1, χ2), and let $∞(χ1, χ2)

denote the representation of GC with quotient space B/Bs(χ1, χ2).

3. If χ1(a1)χ2(a2) = (a1a
−1
2 )−p(ā1ā

−1
2 )−q with p, q ≥ 1, let

Bf (χ1, χ2) =
∑

|p−q|≤n<p+q,n≡p+q (2)

B(ρn).

Then Bf (χ1, χ2) is the only proper invariant subspace of B(χ1, χ2). Let $∞(χ1, χ2)

denote the representation of GC whose space is Bf (χ1, χ2), and let σ∞(χ1, χ2)

denote the representation with quotient space B/Bf (χ1, χ2).

4. $∞(χ1, χ2) and $∞(χ′1, χ
′
2) are equivalent iff (χ1, χ2) = (χ′1, χ

′
2) or (χ1, χ2) =

(χ′2, χ
′
1),
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5. If σ∞(χ1, χ2) and σ∞(χ′1, χ
′
2) are defined, then they are equivalent iff (χ1, χ2) =

(χ′1, χ
′
2) or (χ1, χ2) = (χ′2, χ

′
1),

6. If χ1(a1)χ2(a2) 6= (a1a
−1
2 )p(ā1ā

−1
2 )q, then there exists a pair (ν1, ν2) of quasi-

characters such that σ∞(χ1, χ2) = $∞(ν1, ν2).

When these representations are irreducible, we shall denote them by $∞(χ1, χ2)

and refer to them as representations of the principal series.

We shall ultimately want our representations to be unitary, and for this we need

the following:

Proposition 1.4.2. Each irreducible unitarisable representation of GC is one of the

following type:

• $∞(χ1, χ2) with χ1, χ2 unitary. Such representations are called continuous

series.

• $∞(χ1, χ2) in which χ1(a1)χ2(a2)−1 = |a1a2|2sC with 0 < s < 1. These are

called complementary series representations.

• A 1-dimensional representation of the form g 7→ ω(det(g)) for some unitary

character ω : C× → S1.

Remark. We will consider representations of SL2(C) below. Suffice it to say that

every irreducible unitary representation of GC is constructed from one of SL2(C) by

extending the central character to the whole of C×. In addition, unitarity holds for

GC if and only if it holds for SL2(C).

1.4.1.2 An interlude: representations with cohomology

If R is a commutative ring, let M2(R) be the set of 2 × 2 matrices with entries

in R. Consider the following modules: if k is a non-negative integer, let Rk[x, y] be

the ring of homogeneous polynomials P (x, y) in x, y of degree k with coefficients in

R. Let Ek(R) = Rk[x, y] and let Ek(R)⊗ det(v), for an integer v, be Ek(R) as a set.
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As an M2(R)-module, Ek(R)⊗ det(v) has a (left) action given by:a b

c d

P

 (x, y) =P

(x y
)a b

c d

det

a b

c d

v

=P (ax+ cy, bx+ dy)

det

a b

c d

v

If R = Z,O, F or C, define the following M2(R)-module

Ek,l,v,w(R) := (Ek(R)⊗ det(v)) ⊗
R

(El(R)⊗ det(w))

where the overline on the second factor means the action is twisted with complex

conjugation. That is, as a module, El(R)⊗ det(w) = El(R)⊗det(w), but the action

of M2(R) is given by:a b

c d

P

 (x, y) = P

(x y
)a b

c d



det

a b

c d



v

= P (āx+ c̄y, b̄x+ d̄y)

det

a b

c d



v

,

and we define
(
a b
c d

)
to be

(
ā b̄
c̄ d̄

)
.

Recall that g is the complexified Lie algebra of GC and K∞ = U(2).

Definition 1.4.2. By a (g, K∞)-module, we mean a complex vector space W with

actions of g and K∞, such that all vectors in W are K∞-finite, and such that the

two actions are compatible.1 A (g, K∞)-module W is called admissible if, for every

irreducible representation σ∞ of K∞, the multiplicity of σ∞ in W is finite.

Now let R = C, and put M = Ek,l,v,w(C). Let (ρ, V ) be an infinite-dimensional,

irreducible, unitarisable representation of GC. Let V (K∞) be the subspace of K∞-

finite, smooth vectors in V . Then the cohomology of GC is given by its (g, K∞)-

cohomology [5]:

Hq
cts(GC, V ⊗

C
M) = Hq(g, K∞, V (K∞) ⊗

C
M) for q ∈ Z≥0 (1.24)

1For more detail, see [3, p. 140].
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Proposition 1.4.1 tells us that such a (ρ, V ) is of the form ($∞(χ1, χ2), B(χ1, χ2))

for a pair of quasi-characters (χ1, χ2). If we further require that the restriction of

(ρ, V ) to SL2(C) is unitary, Harder [23] has shown that there is only one (equivalence

class) of such (ρ, V ) for which the right-hand side of (1.24) does not vanish. Indeed,

put ρ equal to $(||−
1
2

C η1, ||
1
2
C η2) with the pair (η1, η2) defined below.

Let η1, η2 : C× → C× be two characters which satisfy

η1(a1) =a1−v
1 ā−l−w1 and

η2(a2) =a−1−k−v
2 ā−w2 .

Define the pair (ν1, ν2) so that $(ν1, ν2) = $(||−
1
2

C η1, ||
1
2
C η2). Then

ν1(a1) =a
1
2
−v

1 ā
− 1

2
−l−w

1 and

ν2(a2) =a
− 1

2
−k−v

2 ā
1
2
−w

2 .

Note that the restriction of the representation $(ν1, ν2) to SL2(C) is unitary if

and only if k = l. When this is the case, let ($∞(ν1, ν2), B(ν1, ν2)) denote the unitary

completion of the representation of GC which is induced from the characters (ν1, ν2).

We have

Hq
cts(GC, B(ν1, ν2) ⊗

C
M) =

C if q = 1, 2

0 otherwise

1.4.1.3 Back to the archimedean place

Recall that the extension

1 −→ µ2 −→ GC −→ GC −→ 1

splits. That is, GC = ĜC ⊕ µ2 and ĜC ∼= GC. If $ is an irreducible, genuine,

uniterisable representation of GC and if ε is the non-trivial character of µ2, then

there are unitary characters χ1, and χ2 of C× such that $ = $(χ1, χ2)⊗ ε. We shall

only be interested in the case where $(χ1, χ2) = $∞(ν1, ν2) has cohomology in the

above sense.

Definition 1.4.3. By a (g, K∞)-module, we mean a complex vector space W with

genuine actions of g and K∞, such that all vectors in W are K∞-finite, and such



Chapter 1. Existence of a genuine cusp form 29

that the two actions are compatible. A (g, K∞)-module W is called admissible if, for

every irreducible genuine representation σ∞ of K∞, the multiplicity of σ∞ in W is

finite.

Suppose that (ρ̄, V ) is a genuine, irreducible, uniterisable representation of GC,

and let (ρ, V ) be the representation of GC which gives rise to V : that is, V = V ⊗ ε.

Write V (K∞) for the subspace of K∞-finite vectors in V ; let M = Ek,l,v,w(C) be the

representation of GC given above, whose extension to GC is given by the value −1

on the non-trivial element of µ2. We have

Hq
cts(GC, V ⊗

C
M) = Hq(g, K∞, V (K∞) ⊗

C
M) for q ∈ Z≥0.

It follows that

Hq
cts(GC, V ⊗

C
M) 6= 0⇔ Hq

cts(GC, V ⊗
C
M) 6= 0.

We shall denote by ($∞(ν1, ν2), B(ν1, ν2)) the representation of GC with the

property Hq
cts(GC, B(ν1, ν2) ⊗

C
M) 6= 0 for q = 1, 2.

1.4.1.4 The nonarchimedean places

Let v be a non-archimedean place. We’ll first recall the representation theory

of Gv, as the theory for Gv only requires slight modification. The main result is

that every irreducible ‘admissible’ (in a new sense) representation of Gv is either

‘supercuspidal’, or it is equivalent to a subquotient of the principal series.

Definition 1.4.4. A representation (ρ, V ) of Gv is said to be admissible if:

• For every w ∈ V , the stabiliser in Gv of w is an open subgroup of Gv, and

• For every compact open subgroup H in Gv, the space V H is finite-dimensional.

Recall that the group Gv is a locally compact Hausdorff space. Any such group

has a translation invariant measure.

Definition 1.4.5. An irreducible representation (ρ, V ) of Gv is said to be super-

cuspidal if for every vector w in V there is an open compact subgroup U of Nv for

which ∫
U

ρ(n)w dn = 0
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Definition 1.4.6. An irreducible admissible representation (ρ, V ) is said to be square-

integrable if there is a non-zero w in V and a non-zero u in V̌ such that∫
Zv\Gv

|〈ρ(g)w, u〉|2v|χ(det g)|−1
v dg <∞

where 〈 , 〉 denotes the canonical pairing between V and its contragredient V̌ , Zv

denotes the centre of Gv, and χ is the central character of ρ.

We shall not make use of Definitions 1.4.5 and 1.4.6 other than in Theorem 1.4.13

below.

Suppose that (ρ, V ) is an irreducible, admissible representation which is not su-

percuspidal. Then, by a theorem of Jacquet and Harish-Chandra [19], (ρ, V ) is

equivalent to a subquotient of an induced representation of Gv of the following form.

Let τ be the 1-dimensional representation of Bv given by:a1 b

0 a2

 7→ |a1a
−1
2 |

1
2
v χ1(a1)χ2(a2)

for a pair (χ1, χ2) of quasi-characters F×v → C×. Consider the space B(χ1, χ2) of

complex-valued locally constant functions f on Gv which satisfy

f

a1 b

0 a2

 g

 =|a1a
−1
2 |

1
2
v χ1(a1)χ2(a2)f(g) and (1.25)

∫
Kv

|f(k)|2v dk <∞ (1.26)

The group Gv acts on these functions via (fg)(h) = f(gh) and hence B(χ1, χ2)

is the space of a representation of Gv induced from that of τ which we denote by

(ρ(χ1, χ2), B(χ1, χ2)).

The following result [24] of Jacquet-Langlands tells us when the representations

(ρ(χ1, χ2), B(χ1, χ2)) are irreducible and uniterisable.

Theorem 1.4.3. 1. ρ(χ1, χ2) is irreducible if χ1(a1)χ−1
2 (a2) 6= |a1a2|±1

v .

2. If χ1(a1)χ−1
2 (a2) = |a1a2|−1

v , then ρ(χ1, χ2) has a unique irreducible subrep-

resentation $v(χ1, χ2) which is 1-dimensional. The corresponding quotient is

irreducible, square-integrable and denoted by σv(χ1, χ2).
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3. If χ1(a1)χ−1
2 (a2) = |a1a2|v, then ρ(χ1, χ2) also has a unique irreducible subrep-

resentation which we denote by σv(χ1, χ2) which is always infinite-dimensional.

The corresponding 1-dimensional quotient is denoted $v(χ1, χ2).

4. The representations in (1) are uniterisable if either:

• Both characters χ1 and χ2 are unitary. These are called the continuous

series. Or,

• χ1(a1) = χ−1
2 (a2) and χ1(a1)χ−1

2 (a2) = |a1a2|αv with 0 < α < 1 .This gives

the complementary series.

The representations in (2) and (3) are uniterisable iff χ1χ2 is unitary.

5. $v(χ1, χ2) is equivalent to $v(χ
′
1, χ

′
2) iff either (χ1, χ2) = (χ′1, χ

′
2) or (χ1, χ2) =

(χ′2, χ
′
1).

When the representations ρ(χ1, χ2) are irreducible, we shall denote them by

$v(χ1, χ2) and refer to them as representations of the principal series. The irre-

ducible subquotients that we have denoted by σv(χ1, χ2) are called special represen-

tations.

We shall also need the following:

Definition 1.4.7. An irreducible, admissible representation (ρ, V ) is said to be level

1, or unramified, if it contains a Kv-invariant non-zero vector. Or, equivalently, if

it contains the identity representation of Kv at least once.

We can extend this notion of ‘level’ in the following way [19].

Theorem 1.4.4. Let (ρ, V ) denote any irreducible admissible representation of Gv.

Then there is a largest subgroup Lv of Kv such that the space of vectors v with

ρ(l)(v) = v for all l ∈ Lv

is not trivial. Furthermore, this space has dimension one.

We shall call a quasi-character χ : F×v → C× unramified if it is trivial on O×v . We

shall require the following [19].
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Theorem 1.4.5. An irreducible admissible representation (ρ, V ) of Gv is level 1 if

and only if ρ = $(χ1, χ2) for some pair of unramified characters χ1, χ2 of F×v , and

ρ is not a special representation. In this case, the identity representation of Kv is

contained exactly once in (ρ, V ).

To conclude our discussion of the irreducible, admissible, uniterisable representa-

tions of Gv, it remains to observe that the irreducible supercuspidal representations

with unitary central character are uniterisable. We shall say no more than they do

exist, and can be constructed using the ‘Weil’ representation [19].

Consider the group Gv.

Definition 1.4.8. A representation (ρ, V ) of Gv is said to be admissible if:

• For every w ∈ V , the stabiliser in Gv of w is an open subgroup of Gv, and

• For every compact open subgroup H in Gv, the space of vectors stabilized by H

is finite dimensional.

Definition 1.4.9. An irreducible representation (ρ, V ) of Gv is said to be super-

cuspidal if for every vector w in V there is an open compact subgroup U of N̂v for

which ∫
U

ρ(n)w dn = 0

Note that this makes sense because the extension defining Gv always splits uniquely

over Nv.

It turns out [17] that every irreducible, genuine, admissible, non-supercuspidal

representation of Gv is equivalent to a subquotient of an induced representation. We

turn to the description of the induced representation.

Suppose that we have a genuine irreducible 1-dimensional representation τ0 of

the group T
2

v. By Remark 1.1.2, the group T
2

v is abelian, and by Corollary 1.1.6, it

lifts to a subgroup T̂ 2
v in Gv. Thus, τ0 is a pair of quasi-characters (χ1, χ2) of F×2

v .

Extend τ0 to a maximal abelian (finite index) subgroup T
0

v of T v, and then extend

it again to the group T
0

vN̂v by the value 1 on N̂v. Write τ for the representation τ0

induced to Bv. Note that the dimension of τ is 4 when v is odd, and 16 otherwise.
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Consider the space B(χ1, χ2) of complex-valued locally constant functions on the

group Gv which satisfy:

f


a1 b

0 a2

 , ξ

 g

 = ξ τ


a1 b

0 a2

 , 1


 |a1a

−1
2 |

1
2
v f(g)

for all


a1 b

0 a2

 , ξ

 ∈ Bv, and all g ∈ Gv and

∫
Kv

|f(k)|2v dk <∞

The groupGv acts on this space via right translation; we write (ρ(χ1, χ2), B(χ1, χ2)),

or Ind Gv
Bv

(χ1, χ2), for the induced representation of Gv.

See [20, p. 115] for the next result.

Theorem 1.4.6. 1. ρ̄(χ1, χ2) is irreducible if χ1(a1)χ−1
2 (a2) 6= |a1a2|

± 1
2

v .

2. If χ1(a1)χ−1
2 (a2) = |a1a2|

− 1
2

v , then ρ̄(χ1, χ2) has a unique irreducible subrepre-

sentation denoted $v(χ1, χ2);

3. If χ1(a1)χ−1
2 (a2) = |a1a2|

1
2
v , then ρ̄(χ1, χ2) has a unique irreducible subrepre-

sentation which we denote by σv(χ1, χ2);

4. The representations in (1) are uniterisable if either:

• Both characters χ1 and χ2 are unitary (these are called the continuous

series), or

• χ1(a1) = χ−1
2 (a2) and χ1(a1)χ−1

2 (a2) = |a1a2|αv with 0 < α < 1
2

(this gives

the complementary series).

The representations in (2) and (3) are uniterisable iff χ1χ2 is unitary.

5. $v(χ1, χ2) is equivalent to $v(χ
′
1, χ

′
2) iff either (χ1, χ2) = (χ′1, χ

′
2) or (χ1, χ2) =

(χ′2, χ
′
1).

When the representations ρ̄(χ1, χ2) are irreducible, we shall denote them by

$v(χ1, χ2) and refer to them as representations of the principal series. The rep-

resentation we have denoted by σv(χ1, χ2) is called special.
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Definition 1.4.10. If v is an odd place, an irreducible, admissible representation

(ρ̄, V ) of Gv is said to be level 1, or unramified, if it contains the representation

{k, ξ} 7→ ξ

of Kv at least once, or equivalently, if V
K̂v 6= 0.

An irreducible, admissible representation (ρ̄, V ) of Gπ is said to be level 1 if it

contains the representation

{k, ξ} 7→ ξ

of Kπ(4) at least once.

In analogy with Theorem 1.4.5, we have [18]:

Theorem 1.4.7. An irreducible, admissible representation (ρ̄, V ) of Gv is unram-

ified if and only if it is of the form $v(χ1, χ2) with χ2
1 and χ2

2 unramified and

χ1(a1)χ−1
2 (a2) 6= |a1a2|

1
2 : that is, it is not special. In this case, it contains the

identity representation of Kv exactly once.

The representation theory of Gv is concluded by noting that the supercuspidal

representations again exist, but since we have no use for them in this thesis, we

simply remark that they are associated to the ‘Weil’ representation [20].

1.4.2 Global representation theory

The global theory is built from the local theory as we shall see below. This section

is based on [3] and [20].

Recall the definition (1.4.2) of a (g, K∞)-module.

Definition 1.4.11. A (g, K∞) × G(Af )-module (ρ,H) is a (g, K∞)-module with a

‘smooth’ action of G(Af ). The action of G(Af ) is smooth if every vector x ∈ H is

fixed by some compact open subgroup Lf ⊂ G(Af ).

The point of this definition is that, for a fixed quasi-character ψ : A×/F× → C×,

the space A0(ψ) of cuspidal automorphic forms is a (g, K∞)×G(Af )-module .

Definition 1.4.12. A (g, K∞) × G(Af )-module (ρ,H) is called admissible, if, for

every irreducible representation σ of K∞ ×Kf , the multiplicity of σ in H is finite.
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In this subsection, we shall use the notation (ρv, Hv) for an irreducible, admissible

representation of Gv.

Theorem 1.4.8. i. Suppose that (ρ∞, H∞) is an irreducible admissible (g, K∞)×

G(Af )-module, and suppose for that for each finite place v, (ρv, Hv) is an irre-

ducible admissible representation of Gv. Suppose, moreover, that for almost all

finite places, the representation is unramified and a basis vector x0
v ∈ HKv

v is

given. Then the restricted tensor product

H =⊗
v

′ Hv

with respect to the vectors x0
v is an irreducble admissible (g, K∞)×G(Af )-module.

ii. Conversely, if (ρ,H) is an irreducible admissible (g, K∞)×G(Af )-module, then

there is a collection {(ρv, Hv)} as in (i) and an isomorphism

⊗
v

′ Hv −→ H

of (g, K∞)×G(Af )-modules.

It is customary to write ρ =⊗
v
ρv for the pair (ρ,H). Let us make precise the

meaning of the restricted tensor product ⊗
v

′ Hv. Let S be the finite set of places,

including ∞, for which (ρv, Hv) is not unramified. If v /∈ S, choose a Kv-fixed unit

vector, x0
v. For every finite set S ′ ⊃ S, let

HS′ = ⊗
v∈S′

Hv

If S ′′ ⊃ S ′, define the embedding HS′ → HS′′ by x 7→ x ⊗ ⊗
v∈S′′\S′

x0
v. Taking the

direct limit, we obtain a Hilbert space H = ⊗
v

′ Hv = lim−→HS′ .

Consider again the (g, K∞)×G(Af )-moduleA0(ψ) of cuspidal automorphic forms,

whose central character ψ is fixed. The following theorem is of central importance.

Theorem 1.4.9. 1. The space A0(ψ) is a direct sum of irreducible admissible (g, K∞)×

G(Af )-modules,

A0(ψ) =
⊕
ρ

A0(ψ, ρ),

where A0(ψ, ρ) is a summand isomorphic to ρ.
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Motivated by this, we make the following definition:

Definition 1.4.13. A cuspidal automorphic representation of GA is an irreducible

admissible (g, K∞) × G(Af )-module which is equivalent to a module ρ which occurs

in A0(ψ).

We want the (g, K∞)-module ρ∞ to have cohomology in the sense of Section

1.4.1.2, and for this we make the following definition:

Definition 1.4.14. A cuspidal automorphic representation of GA of cohomological

type is an irreducible admissible (g, K∞)×G(Af )-module which occurs in A0(ψ) and

whose component ρ∞ at infinity is equivalent to $∞(ν1, ν2).

Remark 1.4.1. Recall that a function Φ ∈ A0(ψ) is fixed by some compact open sub-

group Lf ⊂ G(Af ). We’ll refer to Lf as the level of the representation ρ generated

by Φ. This is compatible with the notion of ‘level’ that we used for local represen-

tations; if Lf =
∏
v<∞

Lv then the level of the local component ρv is Lv. In particular,

we’ll say that the representation ρ is level 1 if Lf = Kf .

There are analogous versions of Theorems 1.4.8 and 1.4.9 for the metaplectic

group GA. To state them, we need the relevant notions from the representation

theory of GA.

Recall the definition (1.4.3) of a (g, K∞)-module.

Definition 1.4.15. i. A (g, K∞) × G(Af )-module H is a (g, K∞)-module with a

genuine, ‘smooth’ action of G(Af ). The action of G(Af ) is smooth if every

vector x ∈ H is fixed by some compact open subgroup Lf ⊂ G(Af );

ii. A (g, K∞) × G(Af )-module (ρ̄, H) is called admissible, if, for every irreducible

representation σ of K∞ × K̂ ′f , the multiplicity of σ in H is finite.

Again, we write (ρ̄v, Hv) for an irreducible, admissible representation of Gv.

Theorem 1.4.10. i. Suppose that (ρ̄∞, H∞) is an irreducible admissible (g, K∞)×

G(Af )-module, and suppose that for each finite place v, (ρ̄v, Hv) is an irreducible

admissible representation of Gv. Suppose, moreover, that for almost all finite
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places, the representation is unramified and a basis vector x0
v ∈ H

K̂v
v is given.

Then the restricted tensor product

H =⊗
v

′ Hv

with respect to the vectors x0
v is an irreducble admissible (g, K∞)×G(Af )-module.

ii. Conversely, if (ρ̄, H) is an irreducible admissible (g, K∞)×G(Af )-module, then

there is a collection {(ρ̄v, Hv)} as in (i) and an isomorphism

⊗
v

′ Hv −→ H

of (g, K∞)×G(Af )-modules.

We shall write ρ̄ for the pair (ρ̄, H). To make sense of a product of local genuine

representations of Gv, it will be necessary to view these representations as projective

representations of Gv. Let H denote a Hilbert space and U(H) the unitary operators

in H. A projective representation of Gv is a measurable map φ : Gv → U(H)/C×.

Any such map can be lifted to a map φ′ : Gv → U(H), but not uniquely. In fact, the

‘representation’ φ′ will have the properties:

1. φ′(1) = 1

2. φ′(g1)φ′(g2) = θv(g1, g2)φ′(g1g2)

for all g1, g2 ∈ Gv. Here, θv is a function from Gv × Gv to C× which (by the

associative law in Gv) is a 2-cocycle. We call φ′ a θv−representation, or a multiplier -

representation of Gv; each such representation arises from a projective representation

as above.

Let (ρv, Hv) be a genuine representation of Gv, in which multiplication is defined

by the cocycle βv, and consider the section s : Gv → Gv , g 7→ (g, 1). Define

ρ′v := ρv ◦ s. Then [20]:

Lemma 1.4.11. There is a bijective correspondence between genuine representations

(ρv, Hv) of Gv and βv-representations given by ρv 7→ ρ′v = ρv ◦ s, and this correspon-

dence preserves direct sums and unitary equivalence.
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Suppose that for each v, (ρv, Hv) is an irreducible, admissible, genuine represen-

tation of Gv, and that for almost every v, (ρv, Hv) is unramified. Let {(ρ′v, H
′
v)} be

the collection of βv-representations that they determine, and form the tensor prod-

ucts (ρ′, H ′) = (⊗
v

′ ρ′v,⊗
v

′ H
′
v) as above. Then (ρ′, H ′) is an irreducible, admissible

βA-representation of GA, which determines a genuine representation of GA.

Fix a genuine quasi-character ψ : Z(GA)/(Z(GA) ∩ ĜF )→ C×. Recall the space

A0(ψ) of genuine cuspidal automorphic forms. It is a (g, K∞)×G(Af )-module, and

we have the following important result:

Theorem 1.4.12. 1. The space A0(ψ) is a direct sum of irreducible genuine admis-

sible (g, K∞)×G(Af )-modules,

A0(ψ) =
⊕
ρ̄

A0(ψ, ρ̄),

where A0(ψ, ρ̄) is a summand isomorphic to ρ̄.

Motivated by this, we make the following definition:

Definition 1.4.16. A cuspidal genuine automorphic representation of GA is an ir-

reducible admissible (g, K∞)×G(Af )-module which is equivalent to a module ρ̄ which

occurs in A0(ψ).

We want the (g, K∞) × G(Af )-module ρ̄∞ to have cohomology in the sense of

Section 1.4.1.3, hence:

Definition 1.4.17. A genuine cuspidal automorphic representation of GA of coho-

mological type is an irreducible admissible (g, K∞)×G(Af )-module which occurs in

A0(ψ) and whose component ρ̄∞ at infinity is equivalent to $∞(ν1, ν2).

Recall that a function Φ ∈ A0(ψ) is fixed by some subgroup L̂f ⊂ K̂ ′f . As in

Remark 1.4.1, we shall call L̂f the level of the representation ρ̄ generated by Φ.

Again, this is compatible with the local notion of level, and we shall say that ρ̄ is

level one if L̂f = K̂ ′f .
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1.4.3 The correspondence

Flicker has defined a correspondence, which we’ll call S: Irreducible, admissible, genuine

representations of GA

 −→

 Irreducible, admissible

representations of GA


The global correspondence S can be thought of as a product of local correspon-

dences, each defined Sv: Irreducible, admissible, genuine

representations of Gv

 −→

 Irreducible, admissible

representations of Gv


Suppose (ρv, Hv) is an irreducible, admissible, genuine representation of the local

group Gv, with central character χ. Then

Sv(ρv) is a representation of Gv with central character χ′,

where χ′(z) := χ(z2) for z ∈ F×v

This holds at all places v of F .

In Section 1.4.1, we saw that there are four types of irreducible admissible, genuine

representations of Gv: the principal series representations, special representations,

one-dimensional representations and the supercuspidal representations.

In particular, if $v(χ1, χ2) is a genuine irreducible principal series representation

of Gv whose characters χ1, χ2 are unramified, recall that the central character is

given by χ = χ1χ2. Then,

Sv($v(χ1, χ2)) = $v(χ
′
1, χ

′
2) where χ′(z) := χ′1χ

′
2(z) = χ(z2) = χ1χ2(z2) for z ∈ F×v ,

and $v(χ
′
1, χ

′
2) is the principal series representation of Gv whose central character

is χ′. In other words, the image of a principal series representation under Sv is a

principal series representation.

Remark 1.4.2. If (ρv(χ
′), Hv) is in the image of Sv, then χ′ is even since χ′(−1) =

χ((−1)2) = 1.

Theorem 1.4.13 (The local correspondence). Every irreducible, admissible, gen-

uine representation of Gv corresponds to an irreducible, admissible representation of
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Gv. All supercuspidal representations whose central character is even are obtained

by the correspondence from supercuspidal representations of Gv. Any even special

representation σv(χ
′) is obtained from the square-integrable subquotient σv(χ) of the

induced representation ρv(χ), hence any even 1-dimensional representation $v(χ
′) is

obtained from the quotient $v(χ) of ρv(χ) by σv(χ). Any odd special representation

is obtained from a supercuspidal representation.

The proof of Theorem 1.4.13, as well as Corollary 1.4.14 and Theorem 1.4.15

below, can be found in Flicker [17].

Corollary 1.4.14. For all places v, the correspondence Sv is one-to-one, and takes

level 1 representations to level 1 representations and square-integrable to square-

integrable representations. There are supercuspidal representations which correspond

to (odd) special representations (which are not supercuspidal).

Remark 1.4.3. We identified in Subsection 1.4.1.3 that the only representation of

GC whose restriction to SL2(C) is unitary and which has cohomology is the genuine

continuous series representation we denoted by $∞(ν1, ν2). It turns out that its

image under S∞ does not have cohomology. To see this, write $∞(k, l, v, w) for

$∞(ν1, ν2). Then S∞ takes $∞(k, l, v, w) to $∞(1 + 2k, 1 + 2l,−1
2

+ 2v,−1
2

+ 2w).

But $∞(1 + 2k, 1 + 2l,−1
2

+ 2v,−1
2

+ 2w) has no cohomology since, if v, w ∈ Z, then

−1
2

+ 2v,−1
2

+ 2w /∈ Z.

Definition 1.4.18. The correspondence S takes (ρ̄ = ⊗vρ̄v, H = ⊗vHv) to the

constituent (ρ = ⊗vρv, H = ⊗vHv) if (ρ̄v, Hv) corresponds to (ρv, Hv) for all v.

Thus we can formulate the global correspondence.

Theorem 1.4.15 (The global correspondence). Every irreducible, admissible gen-

uine representation (ρ̄, H) of GA corresponds to an irreducible, admissible repre-

sentation (ρ,H) of GA. The correspondence is one-to-one and its image consists

of all ρ = ⊗vρv such that ρv has even central character for all v and such that if

ρv = $(χ′1, χ
′
2) then both χ′1 and χ′2 are even. Moreover, the pre-image of a cuspidal

automorphic representation is cuspidal.
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It follows from Remark 1.4.3 that if ρ̄ is an irreducible, genuine, automorphic

cuspidal representation of cohomological type, then its image under S will not be of

cohomological type.

We’d like to modify S so that it takes representations of cohomological type

to representations which are still of cohomological type. To this end, consider the

correspondence S̃ given locally by

S̃v(ρ̄) = Sv(ρ̄) ⊗
Fv
|det|

1
2
v (1.27)

where ‘det’ is the 1-dimensional representation of Gv which takes g to det(g) ∈ F×v .

Definition 1.4.19. The correspondence S̃ = S⊗|det |
1
2
A takes (ρ̄ = ⊗vρ̄v, H = ⊗vHv)

to the constituent (ρ = ⊗vρv, H = ⊗vHv) if (ρ̄v, Hv) corresponds to (ρv, Hv) for all

v.

We claim

Proposition 1.4.16. If S̃(ρ̄, H) is an irreducible, admissible, cuspidal representa-

tion of GA of cohomological type, then (ρ̄, H) is an irreducible, admissible, genuine,

cuspidal representation of GA of cohomological type.

Proof. We must show that the S̃-pre-image of a cuspidal automorphic represen-

tation is a cuspidal automorphic representation. By Theorem 1.4.15, this is true for

S; thus it will suffice to show that tensoring with |det|
1
2
A preserves this condition.

Suppose V is a subspace of cusp forms isomorphic to a representation ρ. Put

W =
{
f(g) |det(g)|

1
2
A : f ∈ V

}
.

Then it is trivial to check that W is a space of cusp forms, and is isomorphic to

ρ⊗ |det|
1
2
A.

To check that the S̃-pre-image of a representation with cohomology still has coho-

mology, we only need to check the pre-image under the local component S̃∞. Recall

from Remark 1.4.3 that $∞(ν1, ν2) is denoted by $∞(k, l, v, w). A straightforward

computation shows that S̃∞($∞(k, l, v, w)) = $∞(1 + 2k, 1 + 2l,−1 + 2v,−1 + 2w).

Thus, if k′, l′ ≥ 1 are odd integers, and if v′, w′ ∈ Z are odd, then the pre-image

of $∞(k′, l′, v′.w′) is of the form $∞(k
′−1
2
, l
′−1
2
, v
′+1
2
, w
′+1
2

), and k′−1
2
, l
′−1
2

are non-

negative integers, while v′+1
2
, w
′+1
2

are integers.

2
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Remark 1.4.4. When $∞(k, l, v, w) (resp. $∞(k, l, v, w)) is the infinite component

of an automorphic cuspidal representation ρ (resp. ρ̄) of GA (resp. GA), we shall

refer to the pair (k, l) as the weight of ρ (resp. ρ̄).

Observe that S̃∞ preserves the unitarity of $∞(k, l, v, w) when restricted to

SL2(C). Indeed, if k = l then 1 + 2k = 1 + 2l. Furthermore, twisting by the

character g 7→ |det(g)|
1
2
v does not change the level of the representation: suppose

that l ∈ Lv ⊂ Kv for some v. Then |det(l)|
1
2
v = 1 because det(l) ∈ O×v . It follows

that

ρLvv 6= 0⇔
(
ρv ⊗ |det|

1
2
v

)Lv
6= 0.

That is, the level of S(ρ̄) agrees with that of S̃(ρ̄).

Finally, the conclusion we wish to draw:

Corollary 1.4.17. For all non-negative integers k,

H2
cusp(SL2(O), E2k+1,2k+1(C)) 6= 0⇒ H2

cusp(Γ
′, κQ ⊗

C
Ek,k(C)) 6= 0.

Proof. Suppose

H2
cusp(SL2(O), E2k+1,2k+1(C)) 6= 0

for some non-negative integer k. By the generalised Eichler-Shimura-Harder isomor-

phism (0.6), there is a cuspidal automorphic representation $ of SL2(A) of level 1

(see Remark 1.4.1), whose infinite component is equivalent to $∞(2k+1, 2k+1, v, w)

for some odd integers v, w. Since $ is of level 1, its local constituents $v are of level

1, and by Theorem 1.4.5, they are principal series representations with an associ-

ated pair of unramified characters. An unramified character is even, therefore the

representations are even. Thus by Theorem 1.4.15, $ is in the image of S̃.

Let $ be the S̃-pre-image of $. By Proposition 1.4.16, $ is a genuine cuspidal

automorphic representation of SL2(A) of cohomological type. We shall determine

the level of $.

At each odd, finite prime, the local constituent $v is unramified, and therefore

of level 1. We claim that at the even prime π,

$K̂π(4)
π 6= 0.

We calculate this space in Section 3.4, and we show that it is non-zero. Thus $ is

of level 1 (see the paragraph immediately after Definition 1.4.17).
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By the last paragraph of the proof of Proposition 1.4.16, the infinite component

$∞ of $ is equivalent to $∞(k, k, v+1
2
, w+1

2
). Therefore, by the metaplectic gener-

alised Eichler-Shimura-Harder isomorphism (0.9),

H2
cusp(Γ′, κQ ⊗

C
Ek,k(C)) 6= 0,

and the Corollary is proved. 2

By invoking Corollary 1.5 of [13, p. 4], we see that for large k,

H2
cusp(SL2(O), E2k+1,2k+1(C)) 6= 0.
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Second cohomology

There is a natural action (0.3) of SL2(O) on H. One method for calculating

the cohomology of SL2(O) or a finite index subgroup Υ ⊂ SL2(O) is to build it

from the cohomology of Υ\H: there is a spectral sequence relating H∗(Υ\H,−) to

H∗(Υ,−). The space Υ\H, however, is not optimal: not only is it not compact, but

the dimension of H is strictly larger than the groups’ virtual cohomological dimension,

which is 2. In 1980, Mendoza [30] produced a smaller space D ⊂ H of dimension

2, called a “spine”, on which the group still acts properly, and such that Υ\D is

compact. Moreover, there is a deformation retract Υ\H → Υ\D which verifies the

isomorphism

H∗(Υ\H,W) ∼= H∗(Υ\D,W)

for all Υ-modules W associated to the local system W.

The principal conclusion of Chapter 1 was that

H2
cusp(Γ′, κQ ⊗

C
Ek,k(C)) 6= 0 for some k ≥ 0;

indeed, finding a non-trivial cohomology class amounts to finding a non-trivial gen-

uine automorphic cuspidal representation of SL2(A). In this chapter, we shall show

that there is a non-trivial cohomology class when k = 2. Our main result (Proposi-

tion 2.4.1) is that

dimC H
2
cusp(Γ, Ind Γ

Γ′(κQ) ⊗
C
E2,2(C)) ≥ 8. (2.1)

Expression (2.1) says that there is a non-trivial genuine cusp form of level one and

weight (2, 2).
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In Section 2.1, we shall recall the spectral sequence used to calculate the coho-

mology of Υ and define the subset D and Υ\D in the case that Υ = SL2(O). In

Section 2.2, we shall utilise D to exhibit the cohomology of SL2(O) and some of its

congruence subgroups. In particular, we give the Q-dimensions of H2(Γ0(a),Q) and

H2(Γ1(a),Q) for some non-zero ideals a ⊂ O, and we show (Proposition 2.2.2) that

H2(Γ′, κQ) ∼= Q(5). (2.2)

Section 2.3 is concerned with torsion in the integral second cohomology of SL2(O)

and Γ′. We compute

H2(SL2(O),Z) ∼= Z/2Z⊕ Z/2Z,

and we calculate H2(Γ′, κZ) up to extension: Proposition 2.3.5 says that there is an

exact sequence

0 −→ Z(5) −→ H2(Γ′, κZ) −→ (Z/2)(35) ⊕ (Z/4)(16) ⊕ (Z/12)(9) −→ 0.

In the last section, 2.4, as well as our main result Proposition 2.4.1 mentioned

above, we show that when a = (1 + 2i), (1 + 4i) or (3 + 2i), the cohomology

H2(Γ0(a),Q) is entirely Eisenstein: that is, H2
cusp(Γ0(a),Q) = 0 for these ideals

a. Moreover, we show that (2.2) is Eisenstein: we prove, both algebraically and

geometrically, that

H2
cusp(Γ′, κQ) = 0.

Notation shall be described below.

2.1 The tools

Suppose that Υ is a group which acts cellularly (on the left) on a contractible

CW-complex X of finite dimension. For each cell δ of X, let Υδ be the stabilizer

subgroup Υδ = {γ ∈ Υ | γδ = δ} and let Xp be a set of representatives for the

Υ-orbits of p-cells of X. Then there is a natural equivariant spectral sequence:

Ep,q
1 (M) =

⊕
δ∈Xp

Hq(Υδ,M)⇒ Hp+q(Υ,M) (2.3)
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for any Υ-module M . For the derivation of this sequence, see [7] or (for a homological

version) [34].

Fix, once and for all, the notation Γ = SL2(O). We call a subset D ⊂ H a spine

for Γ if it is a Γ-equivariant deformation retract of H of dimension 2.

Theorem 2.1.1. There exists a spine D for Γ with the following properties:

• D is naturally endowed with the structure of a locally finite regular CW-complex;

• The action of Γ on D is cellular;

• The quotient Γ\D is a finite CW-complex.

A more general version of Theorem 2.1.1 can be found in [40]. See also [34].

Definition 2.1.1. A finite subcomplex D′ ⊂ D is called a fundamental cellular

domain for Γ if D = ΓD′ and if points in open 2-cells are not Γ-equivalent. If

we denote by “∼” the cellular equivalence relation on D′ induced by identification of

0 or 1-cells under Γ, then it follows that ∼ \D′ and Γ\D are isomorphic as CW-

complexes.

The following picture shows the fundamental cellular domain ∼ \D′ for Γ in H,

as seen from (0,∞):

P4 := ( i
2
,
√

3
2

)

P1 := (0, 1)

P3 := (1
2

+ i
2
,
√

2
2

)

P2 := (1
2
,
√

3
2

)
t

tt

t

The domain∼ \D′ is contained in the unit hemisphere {(z, r) ∈ H : |z|2+r2 = 1}

centred at the origin of H. The 4 vertices (shown on the diagram as dots) are the

0-cells, the 4 lines are the 1-cells and the single face is a 2-cell. We can apply the

spectral sequence (2.3) to the pair X =∼ \D′,Υ = Γ. Let

a :=

0 i

i 0

 , b :=

0 −1

1 0

 , c :=

0 i

i 1

 , d :=

 i 0

1 + i −i

 , e :=

−i i− 1

0 i

 .
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Let Γi denote the stabilizer of the 0-cell Pi, and Γij the stabilizer of the edge PiPj.

Then:

Γ12 =< a >∼= C4 ; Γ1 =< a, b >∼= Q8

Γ23 =< ce3 >∼= C6 ; Γ2 =< a, ce3 >∼= Q12

Γ34 =< c >∼= C6 ; Γ3 =< c, d, e >∼= T24

Γ41 =< b >∼= C4 ; Γ4 =< b, c >∼= Q12

where Cl is the cyclic group of order l, Q8 = 〈 x, y | x4 = 1, x2 = y2, y−1xy =

x−1〉 = 〈 x, y, z | x2 = y2 = z2 = xyz = −1〉 is the group of Quaternions

of order 8, Q12 is part of the family of the generalised Quaternion groups Q4k =

〈 x, y | x2k = y4 = 1, xk = y2, y−1xy = x−1〉 of order 4k, where k is an integer ≥ 2,

and T24 = 〈 r, s, t | r2 = s3 = t3 = rst〉 is the binary tetrahedral group of order 24.

We shall only prove that Γ4 =< b, c >∼= Q12; the proof exhibits the salient fea-

tures of the rest of the calculations of stabilizer subgroups.

Proof of Γ4 =< b, c >∼= Q12.

We shall use the identification (0.2) to think of points (z, r) ∈ H as elements

q = z + rj ∈ H. Accordingly, let P = i
2

+
√

3
2
j. Note that if w = x+ iy is a complex

number, and w̄ = x− iy denotes its conjugate, then we have the identity:

Pw = w̄P +
i

2
(w − w̄). (2.4)

Recall the action (0.3) of Γ on H. Suppose that ( a bc d ) is in Γ4. Then,a b

c d

P =P ⇔

aP + b =P (cP + d)

=(c̄P +
i

2
(c− c̄))P + d̄P +

i

2
(d− d̄) by (2.4)

=c̄P 2 + (
i

2
(c− c̄) + d̄)P +

i

2
(d− d̄)

=(
i

2
(c− c̄) + d̄)P + (

i

2
(d− d̄)− c̄) since P 2 = −1.
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Hence, a = i
2
(c− c̄) + d̄ and b = i

2
(d− d̄)− c̄. Let N : F → Q denote the norm map

N(w) = ww̄. We have

1 = ad− bc =(
i

2
(c− c̄) + d̄)d− (

i

2
(d− d̄)− c̄)c

=
i

2
((c− c̄)d− (d− d̄)c) +N(c) +N(d)

=
i

2
(cd̄− c̄d) +N(c) +N(d).

Since i(dc̄ − cd̄) = N(c + id) − N(c) − N(d), we can write i
2
(cd̄ − c̄d) = 1

2
(N(c) +

N(d)−N(c+ id)), hence

1 =
1

2
(N(c) +N(d)−N(c+ id)) +N(c) +N(d)

=
1

2
(3N(c) + 3N(d)−N(c+ id))⇔

2 =3N(c) + 3N(d)−N(c+ id).

The three possible solutions for N(c), N(d), N(c+ id) are therefore

N(c) = 0, N(d) = 1, N(c+ id) = 1, or

N(c) = 1, N(d) = 0, N(c+ id) = 1, or

N(c) = 1, N(d) = 1, N(c+ id) = 4.

Let c = w + ix and d = y + iz for w, x, y, z ∈ Z.

3N(c) + 3N(d)−N(c+ id) =3w2 + 3x2 + 3y2 + 3z2 − (c+ id)(c̄− id̄)

=3w2 + 3x2 + 3y2 + 3z2 − ((w − z)2 + (x+ y)2)

=3w2 + 3x2 + 3y2 + 3z2 − (w2 − 2wz + z2 + x2 + 2xy + y2)⇔

2 =2(w2 + x2 + y2 + z2) + 2(zw − xy)

2 =2(w2 + zw + z2) + 2(x2 − xy + y2).

We can write this as two quadratic forms: one in x, y and one in w, z. Writing

both in matrix form and row reducing:2 1

1 2

 −→
2 1

0 3
2

 −→

2 0

0 3
2

 ,

 2 −1

−1 2

 −→
2 −1

0 3
2

 −→

2 0

0 3
2

 ,
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we see that both forms are positive definite. That is,

1 = (w2 + zw + z2) + (x2 − xy + y2)

and both w2 + zw + z2 and x2 − xy + y2 are non-negative. This implies that, either

1. w2 + zw + z2 = 1 and x = y = 0, or

2. x2 − xy + y2 = 1 and w = z = 0.

If case (1), then (w + 1
2
z)2 + 3

4
z2 = 1 so |z| ≤ 1 and z ∈ Z means that z = 0, 1 or

−1. In fact,

z = 0⇒ w = ±1,

z = 1⇒ w = 0 or − 1,

z = −1⇒ w = 0 or 1.

Similarly, if case (2), then (x − 1
2
y)2 + 3

4
y2 = 1 so |x| ≤ 1 and x ∈ Z means that

x = 0, 1 or −1. We have

x = 0⇒y = ±1,

x = 1⇒y = 0 or 1,

x = −1⇒y = 0 or − 1.

Hence Γ4 consists of the following 12 matrices:

0 −1

1 0

 ,

 0 1

−1 0

 ,

−i −1

0 i

 ,

−i 0

−1 i

 ,

i 1

0 −i

 ,

i 0

1 −i

 ,

1 0

0 1

 ,

−1 0

0 −1

 ,

−1 i

i 0

 ,

0 i

i 1

 ,

 1 −i

−i 0

 ,

 0 −i

−i −1

 .

Put

b =

0 −1

1 0

 , c =

0 i

i 1

 .



Chapter 2. Second cohomology 50

Then, c6 = b4 = 1, and

b−1cb =

 0 1

−1 0

0 i

i 1

0 −1

1 0


=

i 1

0 −i

0 −1

1 0


=

 1 −i

−i 0


=c−1.

Therefore, Γ4
∼= Q12 = 〈 b, c〉 . 2

The stabilizer subgroups are also calculated in [34] for the action of PSL2(O) =

SL2(O)/{±1} on H. In this case, the fundamental cellular domain ∼ \D′ is the

same, but the stabilizer subgroups are half as big: they are the quotient of ours by

the group {±1}.

For later use, we shall collect some information about the stabilizer groups.

We can view Q8 as two distinct extensions:

1 −→ C2 −→ Q8 −→ C2 × C2 −→ 1

1 −→ C4 −→ Q8 −→ C2 −→ 1

The first is central, and in the second, the quotient C2 acts on the kernel C4 = 〈 x〉

by the automorphism x 7→ x−1. There are several ways to view Q12. We can write

it, as below, as 3 distinct extensions. The first is split and the others are non-split:

1 −→ C3 −→ Q12 −→ C4 −→ 1

1 −→ C2 −→ Q12 −→ D6 −→ 1

1 −→ C6 −→ Q12 −→ C2 −→ 1

The group D6 = 〈 x, y | x3 = y2 = 1, yxy = x−1〉 is the Dihedral group of order 6.

In the first and third extension, the quotient acts on the kernel by the non-trivial

automorphism, that is, by sending the generator of the kernel to its inverse. The

second extension is central, so D6 acts trivially on C2. The group T24 can be written
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as 2 extensions:

1 −→ C2 −→ T24 −→ A4 −→ 1

1 −→ Q8 −→ T24 −→ C3 −→ 1

where A4 = 〈 x, y | x3 = y2 = (xy)3 = 1〉 is the alternating group of order 12. The

first extension is non-split and central, and the second is non-central and split. The

quotient C3 acts on Q8 by rotating the 3 generators of order 4.

Returning to the fundamental cellular domain ∼ \D′, we see that the stabilizer

of the only 2-cell is {±1} ∼= C2. In pictorial form, the stabilizers are

< b, c >= Q12

P4

P1

< a, b >= Q8

< c, d, e >= T24

P3

< a, ce3 >= Q12

P2

< a >= C4

< ce3 >= C6

< c >= C6

< b >= C4

t

tt

t

The spectral sequence (2.3) simplifies if M is a Γ-module over Z[1
6
]. In this

case, since the primes above 2 and 3 are inverted, the cohomology of the (finite)

stabilizers vanish in degree greater than 0. Hence we have Ep,q
1 (M) = 0 for all q > 0.

Therefore the spectral sequence is concentrated on the horizontal axis q = 0 and the

cohomology of the cochain complex

E0,0
1 (M)

d0,01−→ E1,0
1 (M)

d1,01−→ E2,0
1 (M) (2.5)

gives H∗(Γ,M). That is,

H0(Γ,M) = Ker(d0,0
1 ), H1(Γ,M) = Ker(d1,0

1 )/Im(d0,0
1 ), H2(Γ,M) = M{±Id}/Im(d1,0

1 ).

With the appropriate substitutions, (2.5) reads⊕
0−cell Pi

H0(Γi,M)
d0,01−→

⊕
1−cell Pij

H0(Γij,M)
d1,01−→ H0({±Id},M) (2.6)

Or,

MΓ1 ⊕MΓ2 ⊕MΓ3 ⊕MΓ4
d0,01−→MΓ12 ⊕MΓ23 ⊕MΓ34 ⊕MΓ41

d1,01−→M±Id
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To determine H2, clearly it remains to describe the differential d1,0
1 . In fact, since

the boundary of the 2-cell in the fundamental cellular domain ∼ \D′ is the sum

of the 1-cells each counted once, d1,0
1 is simply the map d1,0

1 ((m1,m2,m3,m4)) =

m1 + m2 + m3 + m4. If we make the assumption that −1 acts trivially on M then

H2 is described by

H2(Γ,M) = M/(MΓ12 +MΓ23 +MΓ34 +MΓ41) (2.7)

If, on the other hand, 6 is not invertible in M - for example, if M = Z - then, in

order to calculate in the spectral sequence (2.3), we shall need the following Lemma.

Lemma 2.1.2. The integral cohomology of the finite groups Cn (n > 0), Q8, Q12, T24

is given, respectively, by:

Hq(Cn,Z) =


Z q = 0

0 q odd

Z/nZ q even , q > 0

Hq(Q8,Z) =



Z q = 0

0 q ≡ 1 (mod 4)

Z/2Z⊕ Z/2Z q ≡ 2 (mod 4)

0 q ≡ 3 (mod 4)

Z/8Z q ≡ 0 (mod 4), q > 0
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Hq(Q12,Z) =



Z q = 0

0 q ≡ 1 (mod 4)

Z/4Z q ≡ 2 (mod 4)

0 q ≡ 3 (mod 4)

Z/12Z q ≡ 0 (mod 4), q > 0

Hq(T24,Z) =



Z q = 0

0 q ≡ 1 (mod 4)

Z/3Z q ≡ 2 (mod 4)

0 q ≡ 3 (mod 4)

Z/24Z q ≡ 0 (mod 4), q > 0

Proof. First, note that if H = R⊕Ri⊕Rj⊕Rk is the Hamiltonian quaternion

algebra, and ifG is a subgroup of the multiplicative group H×, then it is well known [7]

that G has periodic cohomology of period 4. This applies to G = Cn, Q8, Q12 and

T24. Moreover, for such G,

H4(G,Z) ∼= Z/|G|Z, and Hodd(G,Z) = 0. (2.8)

Consider the cohomology of Q8. It suffices to prove that

Hq(Q8,Z) =



Z q = 0

0 q = 1

Z/2Z⊕ Z/2Z q = 2

0 q = 3

Z/8Z q = 4

Consider the Hochschild-Serre spectral sequence related to the group extension

given above,

1 −→ C4 −→ Q8 −→ C2 −→ 1,
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in which C2 acts on C4 non-trivially. Indeed,

Ep,q
2 = Hp(C2, H

q(C4,Z)) =⇒ Hp+q(Q8,Z) (2.9)

To list the terms on the E2 sheet, we must calculate the structure of H ·(C4,Z) as

a C2-module. With the operation of cup product, H ·(C4,Z) = Z[x]/ < 4x > is

a ring [38], where deg(x) = 2 and the action of C2 on x is x 7→ −x. Hence, in

H2(C4,Z), under the action of C2,

x 7−→ −x

2x 7−→ 2x

−x 7−→ x

4x 7−→ 4x

This shows that H2(C4,Z)C2 ∼= Z/2Z. In degree 4, C2 sends x2 to x2, and hence we

have H4(C4,Z)C2 ∼= Z/4Z. It is not hard to show that

Hodd(C2,Z/4Z) ∼= Z/2Z and

Heven(C2,Z/4Z) ∼= Z/2Z.

The first 5 rows and 5 columns of the E2 sheet of the spectral sequence read:

q

p

Z 0 Z/2Z 0 Z/2Z

0 0 0 0 0

Z/2Z Z/2Z Z/2Z Z/2Z Z/2Z

0 0 0 0 0

Z/4Z Z/2Z Z/2Z Z/2Z Z/2Z

The boxed terms are stable. Since we know (by (2.8)) that H3(Q8,Z) = 0,

E1,2
2 must vanish. So there must be an injective map E1,2

3 → E4,0
3 which is also an

isomorphism. We know (again, by (2.8)) that H4(Q8,Z) ∼= Z/8Z, hence E0,4
3 = Z/4Z

must be stable from the E3 sheet onwards, so the map E0,4
3 → E3,2

3
∼= Z/2Z must be
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trivial. Given that H5(Q8,Z) = 0, this forces the map E3,2
3 → E6,0

3
∼= Z/2Z to be an

isomorphism.

The terms we are interested in stabilize at the E4 sheet, which takes the form:

q

p

Z 0 Z/2Z 0 0

0 0 0 0 0

Z/2Z 0 Z/2Z 0

0 0 0

Z/4Z 0

Therefore, H0(Q8,Z) ∼= Z, H4(Q8,Z) ∼= Z/8Z and H2(Q8,Z) occurs in an exact

sequence

0 −→ Z/2Z −→ H2(Q8,Z) −→ Z/2Z −→ 0.

Observe that H2(C2,Z/2Z) ∼= Z/2Z. This means that H2(Q8,Z) is either Z/2Z ⊕

Z/2Z (the split extension), or Z/4Z (the non-split extension). To determine which,

consider the short exact sequence of abelian groups:

0 −→ Z −→ Q −→ Q/Z −→ 0,

and the associated long exact sequence in group cohomology:

· · · → H1(Q8,Z)→ H1(Q8,Q)→ H1(Q8,Q/Z)→ H2(Q8,Z)→ H2(Q8,Q)

→ H2(Q8,Q/Z)→ · · ·

Since Q is torsion-free, H1(Q8,Q) = H2(Q8,Q) = 0, so we have an isomorphism

H2(Q8,Z) ∼= H1(Q8,Q/Z). Let [Q8, Q8] = {xyx−1y−1 | x, y ∈ Q8} denote the
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subgroup of commutators of Q8. Now,

H1(Q8,Q/Z) =Hom(Q8,Q/Z),

=Hom(Q8/ [Q8, Q8] ,Q/Z) since Q/Z is abelian,

=Hom(C2 × C2,Q/Z),

=Z/2Z⊕ Z/2Z.

This proves that H2(Q8,Z) ∼= Z/2Z⊕ Z/2Z.

See [34, p. 592] for H ·(Cn,Z) and H ·(T24,Z). For H ·(Q12,Z), see [10, p. 254].

2

The differential maps Ep,q
1 → Ep+1,q

1 on the E1 sheet of the spectral sequence

(2.3) involve restriction maps from group cohomology. We determine these maps in

the following Lemmata.

First, we need a Lemma from finite group cohomology.

Lemma 2.1.3. For any finite group G and positive integer n, there is an isomor-

phism

Hn(G,Z) ∼= Hn(G, Ẑ)

where Ẑ denotes the profinite completion of Z.

Proof. Let n be an integer > 0. Consider the tensor product of abelian groups

Hn(G,Z) ⊗
Z
Ẑ and the map

Hn(G,Z) ⊗
Z
Ẑ −→ Hn(G, Ẑ). (2.10)

Since Ẑ is torsion-free as an abelian group, it is flat, and therefore (2.10) is an

isomorphism. On the other hand, since n > 0, Hn(G,Z) is finite, and

Hn(G,Z) ∼= Hn(G,Z) ⊗
Z
Ẑ.

2

The proceeding series of Lemmata give the maps induced on cohomology by the

inclusion maps of the cyclic groups into Q8, Q12 and T24. If Z/lZ (respectively, Z) is

a finite (respectively, infinite) cyclic group, we shall denote by 1 its generator.

Consider Q8. Note that the matrices a, b and ab generate the three cyclic sub-

groups of order 4.
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Lemma 2.1.4. An inclusion i : C4 → Q8 induces the following restriction maps on

cohomology:

1. In degree 0, the map Z→ Z is 1 7→ 1;

2. In degrees congruent to 2 mod 4, the three inclusions give three restriction maps

as follows:

The map Z/2Z⊕ Z/2Z→H2(〈 a〉 ,Z) ∼= Z/4Z is

(1, 0) 7→ 2, (0, 1) 7→ 0

The map Z/2Z⊕ Z/2Z→H2(〈 b〉 ,Z) ∼= Z/4Z is

(1, 0) 7→ 0, (0, 1) 7→ 2

The map Z/2Z⊕ Z/2Z→H2(〈 ab〉 ,Z) ∼= Z/4Z is

(1, 0) 7→ 2, (0, 1) 7→ 2.

Here, we are identifying H2(Q8,Z) with Hom(C2 × C2,Q/Z) ∼= Z/2Z ⊕ Z/2Z

using the isomorphism Q8/[Q8, Q8] ∼= C2 × C2;

3. In positive degrees congruent to 0 mod 4, the map Z/8Z → Z/4Z is 1 7→ 1 or

1 7→ 3;

4. In all other degrees, the map is trivial.

Proof. Our proof will be based on the proof of Lemma 2.1.2. Indeed, recall the

E2 sheet of the spectral sequence (2.9).

Consider the (higher) 5-term exact sequence:

0 −→ E2,0
2

inf−→ H2(Q8,Z)
res−→ E0,2

2 −→ E3,0
2 −→ H3(Q8,Z) −→ 0 (2.11)

where ‘inf’ and ‘res’ are the inflation and restriction maps, respectively. Given that

E3,0
2 = 0, sequence (2.11) reduces to an exact sequence

0 −→ H2(C2,Z)
inf−→ H2(Q8,Z)

res−→ H2(C4,Z)C2 −→ 0

which, with the appropriate substitutions, reads:

0 −→ Z/2Z −→ Z/2Z⊕ Z/2Z −→ Z/2Z −→ 0
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This implies that the map res: H2(Q8,Z)→ H2(C4,Z) must be non-trivial.

Recall the isomorphism H2(Q8,Z) ∼= Hom(Q8/ [Q8, Q8] ,Q/Z) from the proof of

Lemma 2.1.2. Considering the exact sequence

0 −→ Z −→ Q −→ Q/Z −→ 0,

and the long exact sequence in cohomology, we arrive at a similar isomorphism

H2(C4,Z) ∼= Hom(C4,Q/Z).

Let 〈 a〉 , 〈 b〉 , and 〈 ab〉 be the three distinct cyclic subgroups of Q8 of order 4.

The following isomorphisms are canonical:

H1(C4,Q/Z) = Hom(〈 a〉 ,Q/Z) −→Z/4Z

φ 7−→φ(a)

H1(C4,Q/Z) = Hom(〈 b〉 ,Q/Z) −→Z/4Z

φ 7−→φ(b)

H1(C4,Q/Z) = Hom(〈 ab〉 ,Q/Z) −→Z/4Z

φ 7−→φ(ab)

and, if x denotes a, b or ab, then for each copy of C4 = 〈 x〉 , we have a commutative

diagram

H2(Q8,Z)

res

��

= // Hom(〈 a〉 × 〈 b〉 ,Q/Z)

res

��

φ

��
H2(C4,Z)

= // Hom(〈 x〉 ,Q/Z) φ

This means that the three maps res: H2(Q8,Z) → H2(C4,Z) map the three

different copies of Z/2Z inside Z/2Z⊕ Z/2Z to Z/2Z in each case.

Consider the map res: H4(Q8,Z) → H4(C4,Z) in degree 4. Looking at the E4

sheet of the spectral sequence (2.9) from the proof of Lemma 2.1.2, and owing to the

fact that E3,2
4 = 0, we have a short exact sequence

0 −→ H2(C2,Z/4Z) −→ H4(Q8,Z) −→ H4(C4,Z) −→ 0

That is,

0 −→ Z/2Z −→ Z/8Z −→ Z/4Z −→ 0,

which shows that the map res: H4(Q8,Z) −→ H4(C4,Z) is surjective, hence the

generator 1 maps to 1 or 3.
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That the mapH0(Q8,Z)→ H0(C4,Z) is an isomorphism is clear. SinceH1(Q8,Z) =

H3(Q8,Z) = 0, it is also clear that the map is trivial in odd degrees.

It is sufficient to prove the Lemma in degrees 0, 1, 2, 3 and 4 as the following

argument shows. Let x generate H4(Q8,Z), and let y be the image of x under res:

H4(Q8,Z) −→ H4(C4,Z). Then y generates H4(C4,Z), and the diagram

H4+k(Q8,Z)

∪x∼=
��

res // H4+k(C4,Z)

∪y∼=
��

Hk(Q8,Z)
res // Hk(C4,Z)

commutes. 2

Lemma 2.1.5. An inclusion i : C6 → Q12 induces the following maps on cohomology:

1. In degree 0, the map Z→ Z is 1 7→ 1;

2. In degrees congruent to 2 mod 4, the map Z/4Z→ Z/2Z⊕Z/3Z is 1 7→ (1, 0);

3. In positive degrees congruent to 0 mod 4, the map Z/12Z → Z/2Z ⊕ Z/3Z is

surjective: that is, 1 7→ (1, 1) or 1 7→ (1, 2);

4. In all other degrees, the map is trivial.

An inclusion i : C4 → Q12 induces the following maps on cohomology:

1. In degree 0, the map Z→ Z is 1 7→ 1;

2. In degrees congruent to 2 mod 4, the map Z/4Z→ Z/4Z is surjective: that is,

1 7→ 1 or 1 7→ 3;

3. In positive degrees congruent to 0 mod 4, the map Z/12Z = Z/4Z ⊕ Z/3Z →

Z/4Z is surjective: that is, either (1, 0) 7→ 1, (0, 1) 7→ 0 or (1, 0) 7→ 3, (0, 1) 7→

0;

4. In all other degrees, the map is trivial.

Proof. As explained in the proof of Lemma 2.1.4, it suffices to prove the Lemma

in degrees 0, 1, 2, 3 and 4. Consider the non-central extension

1 −→ C6 −→ Q12 −→ C2 −→ 1
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and the associated Hochschild-Serre spectral sequence with coefficients in the 2-adic

integers Z2:

Ep,q
2 = Hp(C2, H

q(C6,Z2)) =⇒ Hp+q(Q12,Z2) (2.12)

Note that

Hp(C2,Z2) =


Z2 if p = 0

0 if p is odd

Z/2Z if p > 0, is even

Hq(C6,Z2) =


Z2 if q = 0

0 if q is odd

Z/2Z if q > 0, is even

Moreover, Hq(C2,Z/2Z) = Z/2Z for all q, and the action of C2 on H ·(C6,Z2) is

trivial. The following terms of the spectral sequence stabilize at the E4 sheet, which

takes the form

q

p

Z2 0 Z/2Z 0 0

0 0 0 0

Z/2Z 0 Z/2Z

0 0

Z/2Z

We can therefore read off the exact sequence

0 −→ H2(C2,Z2) −→ H2(Q12,Z2) −→ H2(C6,Z2)C2 −→ 0

That is,

0 −→ Z/2Z −→ Z/4Z −→ Z/2Z −→ 0
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from which we see that the degree 2 map at the prime 2, is

res : H2(Q12,Z2)→ H2(C6,Z2)

1 7→ 1

Furthermore, we have an exact sequence

0 −→ Z/2Z −→ H4(Q12,Z2)
res−→ H4(C6,Z2) −→ 0

That is,

0 −→ Z/2Z −→ Z/4Z −→ Z/2Z −→ 0,

from which we see that the degree 4 map at the prime 2, is

res : H4(Q12,Z2)→ H4(C6,Z2)

1 7→ 1

Next, consider the spectral sequence (2.12) at the prime 3, and note the following

results:

Hp(C2,Z3) =

Z3 if p = 0

0 if p 6= 0

Hq(C6,Z3) =


Z3 if q = 0

0 if q is odd

Z/3Z⊗ χ q
2 if q > 0, is even

where χ
q
2 is the C2-module with action given by the non-trivial character χ : C2 →

(Z/3Z)×. However, since Hp(C2, H
q(C6,Z3)) = 0 for p > 0, only the first column of

the spectral sequence is non-zero, so that the edge maps

res : Hq(Q12,Z3) −→ Hq(C6,Z3)C2

are isomorphisms.

Observe that by Lemma 2.1.3, we can decompose

Hn(Q12,Z) ∼= Hn(Q12,Z2)⊕Hn(Q12,Z3)⊕Hn(Q12,
∏
p6=2,3

Zp) for n > 0
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However, since 12 is invertible in
∏
p 6=2,3

Zp, the last summand on the right is 0, and

we are left with

Hn(Q12,Z) ∼= Hn(Q12,Z2)⊕Hn(Q12,Z3) for n > 0.

The degree 0 map, Z → Z is clearly an isomorphism. If n > 0 we can put the

information at the primes 2 and 3 together to conclude that the degree 2 map is

non-trivial: that is,

H2(Q12,Z) −→ H2(C6,Z)

1 7→ 3

and the degree 4 map is surjective: that is,

H4(Q12,Z) −→ H4(C6,Z)

1 7→ (1, 1), or

1 7→ (1, 2).

To prove the second part of the Lemma, consider an inclusion C4 ↪→ Q12 and recall

the extension:

1 −→ C3 −→ Q12 −→ C4 −→ 1

where the generator of C4 gives the non-trivial automorphism of C3. The restriction

maps in degrees 0, 1 and 3 are clear. Consider the Hochschild-Serre spectral sequence

associated to this extension, with 2-adic coefficients Z2:

Hp(C4, H
q(C3,Z2)) =⇒ Hp+q(Q12,Z2) (2.13)

Given that Hq(C3,Z2) = 0 for q > 0, the spectral sequence collapses to yield an

isomorphism

inf : Hn(C4,Z2) ∼= Hn(Q12,Z2)

in all dimensions. On the other hand, one can check that the composition res ◦ inf is

the identity on cocycles, hence

res : Hn(Q12,Z2) ∼= Hn(C4,Z2) (2.14)

is an isomorphism for all n.
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Consider (2.13) with coefficients in the 3-adic integers Z3. Only the first column

of the E2-sheet is nonzero, so again, the spectral sequence collapses to yield

Hn(Q12,Z3) ∼= Hn(C3,Z3)C4 (2.15)

Putting (2.14) and (2.15) together, we conclude that the restriction map in degree

2 is an isomorphism:

Z/4Z→ Z/4Z

1 7→ 1, or

1 7→ 3,

and in degree 4, is surjective:

Z/4Z⊕ Z/3Z→ Z/4Z

(1, 0) 7→ 1,

(0, 1) 7→ 0, or

(1, 0) 7→ 3,

(0, 1) 7→ 0.

2

Lemma 2.1.6. An inclusion i : C6 → T24 induces the following maps on cohomology:

1. In degree 0, the map Z→ Z is 1 7→ 1;

2. In degrees congruent to 2 mod 4, the map Z/3Z→ Z/6Z is 1 7→ 2 or 1 7→ 4;

3. In positive degrees congruent to 0 mod 4, the map Z/12Z = Z/3Z ⊕ Z/4Z →

Z/6Z is surjective: that is, (1, 0) 7→ 3, (0, 1) 7→ 4 or (1, 0) 7→ 3, (0, 1) 7→ 2;

4. In all other degrees, the map is trivial.

Proof. By Lemma 2.1.3,

H ·(T24,Z) = H ·(T24,Z2)⊕H ·(T24,Z3).

Consider the subgroup C6 = C3 × C2 ⊂ T24, and the spectral sequence at the prime

2:

Ep,q
2 = Hp(C2, H

q(C3,Z2)) =⇒ Hp+q(C6,Z2) (2.16)
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Since Hq(C3,Z2) = 0 for q > 0, the spectral sequence collapses, and the edge maps

give isomorphisms

res : H ·(C6,Z2) ∼= H ·(C2,Z2).

It shall therefore suffice, at the prime 2, to consider the restriction map H ·(T24,Z2)→

H ·(C2,Z2). But now C2 is a normal subgroup, so we can use the spectral sequence

associated to the extension

1 −→ C2 −→ T24 −→ A4 −→ 1,

namely,

Ep,q
2 = Hp(A4, H

q(C2,Z2)) =⇒ Hp+q(T24,Z2).

The integral homology of A4 is given in [34]. Using this, and the Universal

Coefficients Theorem, one can show that

Hq(A4,Z/2Z) =



Z/2Z q = 0

0 q = 1

Z/2Z q = 2

Z/2Z⊕ Z/2Z q = 3

Z/2Z q = 4

Similarly, one can calculate Hq(A4,Z2) for 0 ≤ q ≤ 4. The following terms of the
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spectral sequence stabilize at the E4 sheet, which reads:

q

p

Z2 0 0 0 Z/2Z

0 0 0 0

0 0 Z/2Z

0 0

Z/2Z

Since H2(T24,Z2) is itself trivial, the map in degree 2:

H2(T24,Z2) −→ H2(C2,Z2) is trivial.

There is a filtration on H4(T24,Z2):

Z/2Z ⊂ Z/4Z ⊂ H4(T24,Z2) = Z/8Z,

where the top quotient is E4,0
4 = H4(C2,Z2) ∼= Z/2Z; hence there is an exact sequence

0 −→ Z/4Z −→ H4(T24,Z2) −→ H4(C2,Z2) −→ 0.

That is,

0 −→ Z/4Z −→ Z/8Z −→ Z/2Z −→ 0,

from which we can conclude that the degree 4 map is

H4(T24,Z2) −→ H4(C2,Z2)

1 7→ 1.

Next consider the spectral sequence (2.16) at the prime 3. Owing to the fact that

Hp(C2,Z3) = 0 for p > 0, the edge maps give isomorphisms

res : H ·(C6,Z3) ∼= H ·(C3,Z3).

However, C3 is not a normal subgroup of T24, so the above method does not apply.

The subgroup C3 is instead the Sylow 3-subgroup, and a well-known result [10, p. 259]
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gives

H ·(T24,Z3) ∼= H ·(C3,Z3)N(C3).

The set H ·(C3,Z3)N(C3) denotes the cohomology classes which are invariant under

the action of the normalizer N(C3) of C3 in T24. The cohomology H ·(C3,Z3) is a

ring Z3[x]/ < 3x > in which deg(x) = 2, and the action of any element of N(C3) is

either trivial, or else takes x to −x. A quick check using Sage gives

N(C3) = C3 ∪


−1 0

0 −1

 ,

0 i

i 1

 ,

 1 −i

−i 0

 ,

and each element in N(C3) acts trivially on C3. Therefore,

Hn(C3,Z3)N(C3) =


Z3 for n = 0

0 for n odd

Z/3Z for n even, > 0

The restriction map at the prime 3, for both degrees 2 and 4, is an isomorphism:

H i(T24,Z3)
∼=−→ H i(C3,Z3) for i = 2, 4.

Combining the information at both primes, and making use of Lemma 2.1.3, we

arrive at the desired result.

2

In the sequel, we shall calculate the second cohomology of some congruence sub-

groups of Γ. Rather than find a fundamental cellular domain for each subgroup, we

shall employ a fundamental tool called “Shapiro’s Lemma”. Suppose that Υ is a

subgroup of Γ and that M is a right R[Υ]-module under ρ for some commutative

ring R. We can regard R[Γ] as a R[Γ]−R[Υ] bi-module: that is, a left R[Γ]-module

and a right R[Υ]-module. Then CoindΓ
Υ(M) := HomR[Υ](R[Γ],M) = {f : Γ →

M | f(γh) = ρ(h)f(γ) ∀γ ∈ Γ, h ∈ Υ} is a left Γ-module called the coinduced

Γ-module. The action of Γ is given by (γf)(γ′) = f(γ−1γ′).

Lemma 2.1.7 (Shapiro). If Υ is a subgroup of Γ and M is an R[Υ]-module then

there is an isomorphism

H i(Υ,M) ∼= H i(Γ,Coind Γ
Υ(M)) for all i ≥ 0



Chapter 2. Second cohomology 67

For a proof, see [38, p. 171].

Remark 2.1.1. If Υ has finite index in Γ, then CoindΓ
Υ(M) ∼= IndΓ

Υ(M).

Remark 2.1.2. In the case that M is a trivial R[Υ]-module, CoindΓ
Υ(M) can be

identified with the Γ-module of functions {f : Γ/Υ→M}.

2.2 Examples

Let R be a commutative ring, and recall the M2(R)-modules Ek(R)⊗det(v) from

Subsection 1.4.1.2. Write Ek(R) for this module when considered as a representation

of SL2(R). Note that Ek(R) has {xiyk−i : 0 ≤ i ≤ k} as an R-basis. Furthermore,

write Ek,l(R) for Ek,l,v,w(R) considered as an SL2(R)-module. We shall only be

interested in the case when k = l; in particular, this ensures that −Id acts trivially. It

is useful to remark that Ek(R) ∼= Symk(R(2)) and Ek,l(R) ∼= Symk(R(2)) ⊗
R

Syml(R(2))

as SL2(R)-modules, where Symi(R(2)) is the ith symmetric power of the standard

representation of SL2(R) on R(2) and the overline on the second factor means it is

twisted with complex conjugation.

Consider the following congruence subgroups of Γ:

Γ(a) :=

γ ∈ Γ

∣∣∣∣∣ γ ≡
1 0

0 1

 (mod a)


Γ1(a) :=

γ ∈ Γ

∣∣∣∣∣ γ ≡
1 b

0 1

 (mod a)


Γ0(a) :=

γ ∈ Γ

∣∣∣∣∣ γ ≡
a b

0 d

 (mod a)


for some non-zero ideal a of O called the level. For simplicity, we shall assume that a

is a power of a single prime ideal p. Note the inconsistency in notation with Chapter

1; to avoid using too many symbols, we have used the notation Γ(a) for both the

congruence subgroup of GL2(F ) and of SL2(F ).

We shall make use of Lemma 2.1.7 in the case that M is a trivial Q[Υ]-module.
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First note the following two set bijections:

Γ/Γ1(a)←→ primitive vectors in (O/a)2a b

c d

 7→ (a, c)

Γ/Γ0(a)←→ P1(O/a)a b

c d

 7→
a
c

 where

a
c

 =

λa
λc

 if λ ∈ (O/a)×

We call a vector (x, y) in (O/a)2 primitive if x and y are coprime in O/a; since a = pn,

this is equivalent to either x or y being a unit in O/a. The set P1(O/a) = P1(O/pn)

is:

P1(O/pn) :=


x

1

 : x ∈ O/pn

 ∪

x
p

 : x ∈ (O/pn)×/(1 + pn−1)


∪


 x
p2

 : x ∈ (O/pn)×/(1 + pn−2)

 ∪ · · ·
∪


 x

pn−1

 : x ∈ (O/pn)×/(1 + p)

 ∪

1

0


To calculate H2(Γ0(a),M), the general method is to list the elements of P1(O/a),

calculate IndΓ
Γ0(a)(M)Γij for each 1-cell Pij and then determine the quotient as in

(2.7). Let si be a lift to Γ of the ith element xi of P1(O/a): that is, {si} is a set of

coset representatives for Γ/Γ0(a). Let f ∈ IndΓ
Γ0(a)(M). We have defined the action

of Γ so that if g ∈ Γ, then

(gf)(si) = f(g−1si) = f(sjh) = f(sj) when g−1si = sjh for some h ∈ Γ0(a)

A Q-basis for IndΓ
Γ0(a)(M) is given by {fxi | xi ∈ P1(O/a)} where fxi(xj) = 1 if i = j

and 0 otherwise. The action of Γ on a basis element fxi is

gfxi = fxj if ∃ h ∈ Γ0(a) so that g−1xi = xjh

Proposition 2.2.1.

dimQ(H2(Γ0(3),Q)) = 0.
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Proof. A set of representatives for the quotient O/(3) is given by

{0, 1, i, 2, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i}.

Therefore,

P1(O/(3)) =


0

1

 ,
1

1

 ,
2

1

 ,
i

1

 ,
1 + i

1

 ,
2 + i

1

 ,
2i

1

 ,
1 + 2i

1

 ,
2 + 2i

1

 ,
1

0

 .

Let γi denote the generator of the stabilizer Γij of the 1-cell Pij. That is, define

γ1 =

0 i

i 0

 , γ2 =

0 −1

1 0

 , γ3 =

0 i

i 1

 , γ4 =

 0 1

−1 1

 .

Note that γ1 = a, γ2 = b, γ3 = c and γ4 = ce3.

For i = 1, · · · , 4, we shall calculate the orbit of each element in P1(O/(3)) under

γi.

Observe that if x ∈ O/(3), then

γ−1
1

x
1

 =

 −i
−ix


=

1

x


=

x−1

1

 .
For simplicity, let x denote the element [ x1 ] ∈ P1(O/(3)), and write ∞ for [ 1

0 ]. The

set of orbits under the action of γ1 is:

{{0,∞}, {1}, {2}, {i, 2i}, {1 + i, 2 + i}, {1 + 2i, 2 + 2i}}.

Let us write M for IndΓ
Γ0(3)(Q) and fx for the basis element in M which satisfies

fx(y) = 1 if x = y ∈ P1(O/(3)). Then

MΓ1 = spanQ{f0 + f∞, f1, f2, fi + f2i, f1+i + f2+i, f1+2i + f2+2i}

Similarly, the set of orbits under the action of γ2 is

{{0,∞}, {1, 2}, {i}, {2i}, {1 + i, 1 + 2i}, {2 + 2i, 2 + i}},
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hence

MΓ2 = spanQ{f0 + f∞, f1 + f2, fi, f2i, f1+i + f1+2i, f2+i + f2+2i}.

The set of orbits under the action of γ3 is

{{0,∞, i}, {1, 2 + 2i, 1 + i}, {2 + i, 1 + 2i, 2}, {2i}},

hence

MΓ3 = spanQ{f0 + f∞ + fi, f1 + f2+2i + f1+i, f2+i + f1+2i + f2}.

The set of orbits under the action of γ4 is

{{0,∞, 1}, {2}, {i, 2 + 2i, 1 + i}, {2 + i, 1 + 2i, 2i}},

thus

MΓ4 = spanQ{f0 + f∞ + f1, f2, fi + f2+2i + f1+i, f2+i + f1+2i + f2i}.

Using row reduction, we find easily that

MΓ1 +MΓ2 +MΓ3 +MΓ4 =spanQ{f0 + f1 + f∞, f2, f1+i + f2+2i, f2+i + f1+2i, f2i, fi,

f1+i + f2+i, f1+2i + f2+2i, f1+i + f1+2i, f2+i + f2+2i}

Note that−1 ∈ Γ acts trivially on P1(O/(3)) and hence onM . The spaceH2(Γ0(3),Q)

is therefore given by the quotient (2.7). Since dimQ(MΓ1 + MΓ2 + MΓ3 + MΓ4) =

dimQ(M) = 10, it follows that

dimQ(M/(MΓ1 +MΓ2 +MΓ3 +MΓ4)) = 0.

2

Our result is compatible with that of Adem and Naffah, who calculate that

H2(Γ0(3),Z) ∼= Z/6.



Chapter 2. Second cohomology 71

The following table summarises the range of our calculations:

a dimQ(H2(Γ0(a),Q)) dimQ(H2(Γ1(a),Q))

(1 + i) 1

(1 + i)2 2

(1 + i)3 3

(3) 0

(1 + 2i) 1 12

(2 + i) 1

(1 + 4i) 7

(3 + 2i) 1

In [12], Şengün calculates the rank of a certain subspace of H2(Γ0(a),O) for many

ideals a. The rank of H2(Γ0(a),O) is equal to the dimension of H2(Γ0(a),Q). Şengün

reports that approximately ninety percent of the time, the rank of this subspace is

0. Our results above are compatible with his in so far that the rank of his subspace

is never larger than 7. See Remark 2.4.2 below.

Consider the congruence subgroup Γ′ = Γ(4)SL2(Z). Note that Γ′ ⊂ Γ, but we

used the same symbol for the subgroup Γ(4)G(Z) ⊂ G(O) in Chapter 1. Recall

(Proposition 1.2.7) the 1-dimensional representation of Γ′ denoted κQ.

Proposition 2.2.2.

H2(Γ′, κQ) ∼= Q(5)

Let V = IndΓ
Γ′(κQ) = {f : Γ → Q | f(xγ′) = κQ(γ′)f(x)}. Since dimQV = [Γ :

Γ′] = 64, the calculation is carried out using Sage. The proof of Proposition 2.2.2

shall be an explanation of the Sage algorithm used. First, we need a Lemma.

If a generates the ideal a ⊂ O, we shall write Γ(a) as shorthand for Γ(a). If the

ring R is not O, we’ll write SL2(R, b) for the group of matrices in SL2(R) which are

congruent to the identity modulo the ideal b ⊂ R (generated by b).

Lemma 2.2.3. Let {ai} be the elements of SL2(O/4, 1 + i)/SL2(O/4, 2) and let

{bj} be the elements of SL2(O/4, 2 + 2i). Choose lifts {âi} and {b̂j} to Γ. Then
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{âib̂j for 1 ≤ i, j ≤ 8} is a set of (left and right) coset representatives for the group

Γ′ in Γ.

Proof. First note that

Γ/Γ′ ∼= SL2(O/4)/SL2(Z/4Z). (2.17)

(This is a set bijection, since neither side is a group).

Consider the filtration

SL2(O/4) ⊃ SL2(O/4, 1 + i) ⊃ SL2(O/4, 2) ⊃ SL2(O/4, 2 + 2i) ⊃ 1,

and note that, for 1 ≤ n ≤ 3, there is an isomorphism

SL2(O/4, πn)/SL2(O/4, πn+1) −→ sl2(Z/2Z)

1 + πnx 7−→ x

where sl2 is the Lie algebra of SL2. The top quotient SL2(O/4)/SL2(O/4, 1 + i) is

isomorphic to SL2(F2). This means that

|SL2(O/4)| = 6 ∗ 83.

On the other hand, there is a filtration

SL2(Z/4) ⊃ SL2(Z/4, 2) ⊃ 1,

and a similar argument shows that

|SL2(Z/4)| = 6 ∗ 8.

Consequently, we must find 82 representatives.

From above, it follows

SL2(O/4) = {g′(1 + πx′)(1 + 2y′)(1 + π3z′) : g ∈ SL2(Z/2Z);x, y, z ∈ sl2(Z/2Z)}

where g′ ∈ SL2(Z/4Z) and g′ ≡ g (mod 2), and x′, y′, z′ ∈ sl2(Z/4Z), such that

x ≡ x′ (mod 2), y ≡ y′ (mod 2), z ≡ z′ (mod 2). But (1 + 2y′) and (1 + π3z′)

commute, so we have

SL2(O/4) = {(1 + πx′)(1 + π3z′)(1 + 2y′)g′ : g ∈ SL2(Z/2Z);x, y, z ∈ sl2(Z/2Z)},
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and (1 + 2y′)g′ ∈ SL2(Z/4Z).

The set of 64 representatives {(1 + πx′)(1 + π3z′)} cover all the cosets, so there

is exactly one representative in each coset.

2

A set of lifts to Γ of representatives for the top quotient SL2(O/4)/SL2(O/4, 1 +

i) = SL2(Z/2Z) is given by:

SL2(O/4)/SL2(O/4, 1 + i) =


1 0

0 1

 ,

 0 1

−1 0

 ,

1 1

0 1

 ,

1 0

1 1

 ,

1 −1

1 0

 ,

0 −1

1 1


Likewise, the second quotient SL2(O/4, 1 + i)/SL2(O/4, 2) is SL2(O/2, 1 + i) and a

set of lifts of representatives is:

SL2(O/4, 1 + i)/SL2(O/4, 2) =


1 0

0 1

 ,

i 0

0 −i

 ,

1 π

0 1

 ,

1 0

π 1

 ,

i π

0 −i

 ,

 i 0

π −i

 ,

1 π

π 1 + 2i

 ,

 i π

π 2− i


The lifts of the third and fourth quotient are given respectively by:

SL2(O/4, 2)/SL2(O/4, 2 + 2i) =


1 0

0 1

 ,

1 2

0 1

 ,

1 0

2 1

 ,

−1 0

0 −1

 ,

−1 2

0 −1

 ,

−1 0

2 −1

 ,

1 2

2 5

 ,

−5 2

2 −1


SL2(O/4, 2 + 2i) =


1 0

0 1

 ,

3− 6i 4

−4 −1− 2i

 ,

1 2 + 2i

0 1

 ,

 1 0

2 + 2i 1

 ,

−5 + 2i 4

2 + 2i −1− 2i

 ,

−5 + 2i 2 + 2i

4 −1− 2i

 ,

 1 2 + 2i

2 + 2i 1 + 8i

 ,

−1 + 2i 2 + 2i

2 + 2i 3− 2i


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We have used the fact that SL2(O/4, 2)/SL2(O/4, 2 + 2i) = SL2(O/(2 + 2i), 2).

We turn now to the algorithm used to calculateH2(Γ′, κQ). Consider the following

Sage environment, which shall be the setting of all algorithms in this thesis:

F.<i> = NumberField(x^2+1)

R = F.ring_of_integers()

pi = F.ideal(1+i)

k = R.residue_field(pi,‘b’)

kk = R.quotient_ring(2,‘b’)

kkk = R.quotient_ring(2*pi,‘b’)

kkkk = R.quotient_ring(4,‘b’)

kkkkk = R.quotient_ring(4*pi,‘b’)

M = MatrixSpace(F,2)

m = MatrixSpace(k,2)

mm = MatrixSpace(kk,2)

mmm = MatrixSpace(kkk,2)

mmmm = MatrixSpace(kkkk,2)

Recall formula (2.7). To calculate the space V Γ12 + V Γ23 + V Γ34 + V Γ41 , we must

determine the action of Γ on V .

For r ∈ {âib̂j for 1 ≤ i, j ≤ 8}, define

δr(x) =

κQ(h) if x = rh, h ∈ Γ′

0 otherwise

Then {δr : r ∈ {âib̂j for 1 ≤ i, j ≤ 8}} forms a Q-basis for the vector space

V = IndΓ
Γ′(κQ). If γ ∈ Γ,

(γδr)(x) = δr(γ
−1x) =

κQ(h) if γ−1x = rh, h ∈ Γ′

0 otherwise

=

κQ(h′)δs(x) if x = γrh = sh′h, for h, h′ ∈ Γ′

0 otherwise
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It follows that γδr = κQ(h)δs if γr = sh. The matrix of the action of γ on V is a

64× 64 matrix whose (r, s)th entry is κQ(h) if γr = sh and 0 otherwise. Clearly, we

must be able to find the representative r ∈ {âib̂j for 1 ≤ i, j ≤ 8} of any given γ ∈ Γ.

Define:

quotient0 = [M([1,0,0,1]),M([0,1,-1,0]),M([1,1,0,1]),M([1,0,1,1]),

M([1,-1,1,0]), M([0,-1,1,1])]

quotient1 = [M([1,0,0,1]),M([i,0,0,-i]), M([1,1+i,0,1]),

M([1,0,1+i,1]), M([i,1+i,0,-i]), M([i,0,1+i,-i]),

M([1,1+i,1+i,1+2*i]), M([i,1+i,1+i,2-i])]

quotient2 = [M([1,0,0,1]),M([1,2,0,1]), M([1,0,2,1]),

M([-1,0,0,-1]), M([-1,2,0,-1]), M([-1,0,2,-1]), M([1,2,2,5]),

M([-5,2,2,-1])]

quotient3 = [M([1,0,0,1]),M([3-6*i,4,-4,-1-2*i]), M([1,2+2*i,0,1]),

M([1,0,2+2*i,1]), M([-5+2*i,2+2*i,4,-1-2*i]),

M([-5+2*i,4,2+2*i,-1-2*i]), M([1,2+2*i,2+2*i,1+8*i]),

M([-1+2*i,2+2*i,2+2*i,3-2*i])]

quotient0m = [m([1,0,0,1]),m([0,1,1,0]),m([1,1,0,1]),m([1,0,1,1]),

m([1,1,1,0]),m([0,1,1,1])]

quotient1mm = [mm([1,0,0,1]), mm([i,0,0,-i]), mm([1,1+i,0,1]),

mm([1,0,1+i,1]), mm([i,1+i,0,-i]), mm([i,0,1+i,-i]),

mm([1,1+i,1+i,1+2*i]), mm([i,1+i,1+i,2-i])]

quotient2mmm = [mmm([1,0,0,1]), mmm([1,2,0,1]),

mmm([1,0,2,1]), mmm([-1,0,0,-1]),

mmm([-1,2,0,-1]), mmm([-1,0,2,-1]),

mmm([1,2,2,5]), mmm([-5,2,2,-1])]
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quotient3mmmm = [mmmm([1,0,0,1]), mmmm([3-6*i,4,-4,-1-2*i]),

mmmm([1,2+2*i,0,1]), mmmm([1,0,2+2*i,1]),

mmmm([-5+2*i,2+2*i,4,-1-2*i]), mmmm([-5+2*i,4,2+2*i,-1-2*i]),

mmmm([1,2+2*i,2+2*i,1+8*i]), mmmm([-1+2*i,2+2*i,2+2*i,3-2*i])]

representatives = [a*b for a in quotient1 for b in quotient3]

The input of the following algorithm is an arbitrary element γ ∈ Γ, and the output

is the factorisation γ = rep1 ∗ rep3 ∗ γ5 ∗ rep2 ∗ rep0 for rep1 ∈ Γ(1 + i)/Γ(2) (called

‘quotient1’ above), rep3 ∈ Γ(2 + 2i)/Γ(4) (called ‘quotient3’ above) , γ5 ∈ Γ(4) and

rep2 ∗ rep0 ∈ SL2(Z).

def Decomposition(gamma):

r = quotient0m.index(m(gamma))

rep0 = quotient0[r]

gamma2 = gamma*rep0.inverse()

a = quotient1mm.index(mm(gamma2))

rep1 = quotient1[a]

gamma3 = rep1^-1*gamma2

u = quotient2mmm.index(mmm(gamma3))

rep2 = quotient2[u]

gamma4 = gamma3*rep2^-1

b = quotient3mmmm.index(mmmm(gamma4))

rep3 = quotient3[b]

gamma5 = rep3^-1*gamma4

return([rep1,rep3,gamma5,rep2*rep0])

We must implement the character κQ.

def residuesymbol(x,y):

K = R.residue_field(y)

xbar = K(x)

answer = xbar^((norm(y)-1)/2)
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if answer == K(1):

return 1

elif answer == K(-1):

return -1

elif answer == K(0):

return 0

def legendresymbol(x,y):

factors = F.factor(y)

answer = prod([residuesymbol(x,p[0]) for p in factors if p[1]%2])

return answer

def kappa(A):

c = A[1][0]

d = A[1][1]

return legendresymbol(c,d)

It is sufficient to calculate the action on V of each γ which generates the stabilizer

Γij of each 1-cell Pij: that is, γ1 = a, γ2 = b, γ3 = c, γ4 = ce3.

gammainverselist = [M([0,-i,-i,0]),M([0,1,-1,0]), M([1,-i,-i,0]),

M([1,-1,1,0])]

matrixlist = []

for kk in range(4):

gamma = gammainverselist[kk]

for ii in range(64):

r = representatives[ii]

answer = Decomposition(gamma*r)

newrep = answer[0]*answer[1]

jj = representatives.index(newrep)

kappavalue = kappa(answer[2])

matrixlist.append([ii,jj,kk,kappavalue])
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def func(ii,jj,kk):

for entry in matrixlist:

if entry[0]==ii and entry[1]==jj and entry[2]==kk:

return entry[3]

return 0

‘gammaactionK’ is a list of the four 64 × 64 matrices which give the action of

γ1, γ2, γ3 and γ4 on V .

gammaactionK = [Matrix([[func(ii,jj,kk) for ii in range(64)]

for jj in range(64)]) for kk in range(4)]

Finally, we use formula (2.7), together with Lemma 2.1.7 to calculate H2 as the

quotient V/(V Γ12 + V Γ23 + V Γ34 + V Γ41):

V = QQ^64

kernels = [(1-gammaaction[kk]).right_kernel() for kk in range(4)]

generators = []

for W in kernels:

generators=generators+W.basis()

subspace=V.span(generators)

H2=V.quotient(subspace)

The output is that ‘H2’ is 5-dimensional. This concludes the proof of Proposition

2.2.2.

We can regard κ as a 1-dimensional representation over C. Indeed, define

κC : Γ′ −→ GL1(Q ⊗
Q
C).

Since C is flat as a Q-vector space,

H2(Γ′, κC) = H2(Γ′, κQ ⊗
Q
C) = H2(Γ′, κQ) ⊗

Q
C ∼= C(5).
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For convenience, we shall regard κ as a representation over C in the following results.

Consider the Γ-modules E2(C) and E2,2(C) defined at the beginning of this sec-

tion. Below, we shall modify the above programme to calculate H2(Γ, E2,2(C)),

H2(Γ, IndΓ
Γ′(κC) ⊗

C
E2(C)) and H2(Γ, IndΓ

Γ′(κC) ⊗
C
E2,2(C)).

Proposition 2.2.4.

H2(Γ, Ind Γ
Γ′(κC) ⊗

C
E2(C)) ∼= C(3)

Recall that E2(C) has a C-basis of 3 elements. Let ei denote the matrix of the

action of γi on E2(C). Then

e1 =


0 0 −1

0 −1 0

−1 0 0

 ; e2 =


0 0 1

0 −1 0

1 0 0

 ;

e3 =


0 0 −1

0 −1 2i

−1 i 1

 ; e4 =


0 0 1

0 −1 2

1 −1 1


We define the set {ei} in Sage as ‘gammaactionS’:

E = MatrixSpace(F,3)

gammaactionS = [E([0,0,-1,0,-1,0,-1,0,0]),E([0,0,1,0,-1,0,1,0,0]),

E([0,0,-1,0,-1,2*i,-1,i,1]),E([0,0,1,0,-1,2,1,-1,1])]

We take the tensor product of the representations (‘gammaactionKS’ below) and

calculate the quotient H2 as above:

gammaactionKS = []

for ff in range(4):

temp = gammaactionS[ff]

for gg in range(4):

hh = gammaactionK[gg]

if ff==gg:

answer = temp.tensor_product(hh)

gammaactionKS.append(answer)
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KS_space1 = MatrixSpace(F,192)

KS_space2 = F^192

KS_kernels = [KS_space1(1-gammaactionKS[p]).right_kernel()

for p in range(4)]

KS_generators = []

for W in KS_kernels:

KS_generators=KS_generators+W.basis()

KS_subspace = KS_space2.span(KS_generators)

H2_KS = KS_space2.quotient(KS_subspace)

The output is that H2 is 3-dimensional.

Next, let ēi denote the matrix of the action of γi on E2(C). Then

ē1 =


0 0 −1

0 −1 0

−1 0 0

 ; ē2 =


0 0 1

0 −1 0

1 0 0

 ;

ē3 =


0 0 −1

0 i− 1 2i

2i i+ 1 1

 ; ē4 =


0 0 1

0 −1 2

1 −1 1


We define the set {ēi} in Sage as ‘gammaactionSC’:

gammaactionSC = [E([0,0,-1,0,-1,0,-1,0,0]),E([0,0,1,0,-1,0,1,0,0]),

E([0,0,-1,0,i-1,2*i,2*i,i+1,1]),E([0,0,1,0,-1,2,1,-1,1])]

The following ‘gammaactionSSC’ is the action of Γ on the representation E2,2(C)

(= E2(C) ⊗
C
E2(C)).

gammaactionSSC = []

for r in range(4):

temp1 = gammaactionS[r]

for s in range(4):
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temp2 = gammaactionSC[s]

if r == s:

answer = temp1.tensor_product(temp2)

gammaactionSSC.append(answer)

Analogously, we denote the action of Γ on Ind Γ
Γ′(κC) ⊗

C
E2,2(C) as ‘gammaac-

tionKSSC’, and thereafter the cohomology is calculated as before.

gammaactionKSSC = []

for r in range(4):

temp1 = gammaactionSSC[r]

for s in range(4):

temp2 = gammaactionK[s]

if r == s:

answer = temp1.tensor_product(temp2)

gammaactionKSSC.append(answer)

Proposition 2.2.5.

H2(Γ, E2,2(C)) ∼= C and

H2(Γ, Ind Γ
Γ′(κC) ⊗

C
E2,2(C)) ∼= C(13)

Remark 2.2.1. Şengün has calculated [12] that, as an O-module, H2(Γ/{±1}, E2,2(O))

has rank 1 and contains 2-torsion. He also conjectures that H2(Γ/{±1}, Ek,k(O))

contains 2-torsion except when k = 0.

2.3 Integral cohomology

The integral cohomology of groups is in general much harder to determine than

its counterpart over a field, owing to the possible torsion in the group. The homology

groups of the Bianchi groups have been completely determined [34] as has the integral

ring structure [2]. In this subsection, we shall calculate

H2(Γ,Z)
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and determine, up to extension,

H2(Γ′, κZ)

for the integral representation

κZ : Γ′ −→ GL1(Z).

Recall the spectral sequence (2.3) with M = Z. Using the integral cohomology

calculations of Section 2.1, we can write down the first 3 rows of the E1-sheet:

q

p

Z(4) Z(4) Z

000

H2(C2,Z)H2(Γ12,Z)⊕ · · · ⊕H2(Γ41,Z)H2(Γ1,Z)⊕ · · · ⊕H2(Γ4,Z)
d0,2

1
−→

d0,0
1
−→

d1,0
1
−→

d1,2
1
−→

If PiPj is an edge with vertices Pi and Pj, and an orientation directed from Pi to

Pj, then Γij is a subgroup of both Γi and Γj, and there are restriction maps in group

cohomology:

resΓi
Γij

: H ·(Γi,Z) −→ H ·(Γij,Z) and res
Γj
Γij

: H ·(Γj,Z) −→ H ·(Γij,Z),

and the map ⊕
0−cells Pi

H ·(Γi,Z) −→ H ·(Γij,Z) is

(x1, x2, x3, x4) 7→ res
Γj
Γij

(xj)− resΓi
Γij

(xi).

For ease of notation, write H0(Γi) (respectively, H2(Γi)) for H0(Γi,Z) (respectively,

H2(Γi,Z)), and Z/m for Z/mZ. We shall choose an (anti-clockwise) orientation of

the cell complex ∼ \D′ so that the map d0,0
1 is given by

H0(Γ1)⊕H0(Γ2)⊕H0(Γ3)⊕H0(Γ4)→ H0(Γ12)⊕H0(Γ23)⊕H0(Γ34)⊕H0(Γ41)

Z⊕ Z⊕ Z⊕ Z→ Z⊕ Z⊕ Z⊕ Z

(w1, w2, w3, w4)→ (w2 − w1, w3 − w2, w4 − w3, w1 − w4)



Chapter 2. Second cohomology 83

Hence ker(d0,0
1 ) = Z.

Recall, from Lemmata 2.1.4, 2.1.5 and 2.1.6, that for some i and j, an inclusion

Γij ↪→ Γi induces an isomorphism H2(Γi) ∼= H2(Γij). In such cases, we shall choose

the isomorphism which maps the generator 1, to 1. Then d0,2
1 is the map

H2(Γ1)⊕H2(Γ2)⊕H2(Γ3)⊕H2(Γ4)→ H2(Γ12)⊕H2(Γ23)⊕H2(Γ34)⊕H2(Γ41)

(Z/2⊕ Z/2)⊕ Z/4⊕ Z/3⊕ Z/4→ Z/4⊕ (Z/2⊕ Z/3)⊕ (Z/2⊕ Z/3)⊕ Z/4

(x1, x2, x3, x4, x5) 7→ (x3 − 2x1,−x3, x4, x5,−x4, 2x2 − x5)

Hence ker(d0,2
1 ) = span{(1, 1, 2, 0, 2), (0, 1, 0, 0, 2)}. Both generators of the kernel

have order 2, and they are linearly independent, so ker(d0,2
1 ) ∼= Z/2⊕ Z/2.

We shall need the following restriction maps:

Lemma 2.3.1.

The inclusion C2 ↪→ C4 induces the map H2(C4,Z)→ H2(C2,Z), 1 7→ 1.

The inclusion C2 ↪→ C6 induces the map H2(C6,Z) ∼= Z/2Z⊕ Z/3Z→ H2(C2,Z),

(1, 0) 7→ 1, (0, 1) 7→ 0.

Proof. In both cases, the Hochschild-Serre spectral sequences stabilize at the E2

sheet, giving, in the first case, an exact sequence:

0 −→ H2(C2,Z) −→ H2(C4,Z)
res−→ H2(C2,Z) −→ 0,

and in the second case, an exact sequence:

0 −→ H2(C3,Z) −→ H2(C6,Z)
res−→ H2(C2,Z) −→ 0.

2

Therefore, d1,2
1 is the map

H2(Γ12)⊕H2(Γ23)⊕H2(Γ34)⊕H2(Γ41)→ H2(C2)

(y1, y2, y3, y4, y5, y6) 7→ y1 + y2 + y4 + y6.

We have ker(d1,2
1 ) = {(y1, y2, y4, y6) : y1 + y2 + y4 + y6 is even } ⊕ (Z/3)2. The set

{(y1, y2, y4, y6) : y1 + y2 + y4 + y6 is even } is generated by

(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 1, 0).
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The first and second elements are 4-torsion, and the third element is 2-torsion. Hence,

ker(d1,2
1 ) = (Z/4)2 ⊕ Z/2⊕ (Z/3)2.

It is clear that Im(d1,2
1 ) = Z/2.

The E2 = E∞ sheet of the spectral sequence has first 3 rows:

q

p

Z 0 0

000

0((Z/4)2 ⊕ Z/2⊕ (Z/3)2)/Im(d0,2
1 )Z/2Z⊕ Z/2Z

Hence,

Proposition 2.3.2.

H2(Γ,Z) ∼= Z/2Z⊕ Z/2Z

Next we turn our attention to the calculation of H2(Γ′, κZ). For this, we need

Proposition 2.3.3. For all 1-cells PiPj,

H1(Γij, Ind Γ
Γ′(κZ)) = 0

Proof. Fix i, j (i.e. PiPj) and consider Ind Γ
Γ′(κZ) as a representation of Γij.

There is a Γij - isomorphism,

Ind Γ
Γ′(κZ) ∼=

⊕
ΓijxΓ′

Mx

where the sum is taken over double cosets ΓijxΓ′ ⊂ Γ and Mx := {f : ΓijxΓ′ →

Z | f(xγ′) = κZ(γ′)f(x)}.

For each x ∈ Γij\Γ/Γ′, let Γij,x = {γ ∈ Γij | γxΓ′ = xΓ′}. Then Mx =

Ind
Γij
Γij,x

(κZ ◦ ad(x)) where κZ ◦ ad(x) is the representation of Γij,x given by κZ ◦

ad(x)(γ) = κZ(x−1γx) when γ ∈ Γij,x. Then by Lemma 2.1.7,

H1(Γij, Ind Γ
Γ′(κZ)) =

⊕
x∈Γij\Γ/Γ′

H1(Γij,x, κZ ◦ ad(x)) (2.18)
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If κ(x−1γx) = 1 for each double coset representative x and each γ ∈ Γij,x, then

H1(Γij,x, κZ ◦ ad(x)) = H1(Γij,x,Z)

and one can check that indeed this is the case. It remains to observe that H1(G,Z) =

0 for all finite groups G. 2

A near identical proof of Proposition 2.3.3 works for the 0-cells and for the 2-cell.

That is, for all 0-cells Pi, and for the stabilizer of the 2-cell {±1},

H1(Γi, Ind Γ
Γ′(κZ)) = H1({±1}, Ind Γ

Γ′(κZ)) = 0.

Hence,

Corollary 2.3.4. The map

H2(∼ \D′, Ind Γ
Γ′(κZ))→ H2(Γ, Ind Γ

Γ′(κZ))

is injective.

Proof. Recall the spectral sequence (2.3) with M := Ind Γ
Γ′(κZ). On the E1 sheet,

the cohomology of the bottom row E·,01 gives the cohomology of the cell complex

∼ \D′. By Proposition 2.3.3, the first three columns of the row Ep,1
1 are 0. The E2

sheet therefore takes the form

q

p

H0(∼ \D′,M) H1(∼ \D′,M) H2(∼ \D′,M)

0 0 0

Y

The exact sequence of low-dimensional terms reads

0 −→ H2(∼ \D′,M) −→ H2(Γ,M) −→ Y −→ 0

and the result follows. 2
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Remark 2.3.1.

Y := ker

d0,2
1 :

⊕
0−cell Pi

H2(Γi, Ind Γ
Γ′(κZ))→

⊕
1−cell PiPj

H2(Γij, Ind Γ
Γ′(κZ))


We have shown that H2(Γ′, κZ) is an extension

0 −→ H2(∼ \D′, κZ) −→ H2(Γ′, κZ) −→ Y −→ 0 (2.19)

Our next task is to understand the map d0,2
1 . To this end, we shall use the

decomposition (2.18). We require a precise list of the groups Γij,x for all 1-cells Pij

and all double cosets xk ∈ Γij\Γ/Γ′. For 0 ≤ k ≤ 63, let {xk} denote the (ordered)

set of representatives Γ/Γ′.

|Γij\Γ/Γ′| Equivalent reps Γij,x

P12 63 0 ∼ 8 Γ12,xk = C2 for all k

P23 62 2 ∼ 3 ∼ 7 Γ23,xk =

C6 for k = 0, 1, 8, 9

C2 otherwise

P34 62 0 ∼ 32 ∼ 40 Γ34,xk =

C4 for k = 54, 55, 58, 60

C2 otherwise

P41 63 2 ∼ 3 Γ41,xk =

C4 for k = 0, 1, 6, 7, 8, 9, 14, 15

C2 otherwise



Chapter 2. Second cohomology 87

Then,

H∗(Γ12, Ind Γ
Γ′(κZ)) =

⊕
x∈Γ12\Γ/Γ′

H∗(Γ12,x, κZ ◦ ad(x))

= H∗(C2,Z)(63)

H∗(Γ23, Ind Γ
Γ′(κZ)) =

⊕
x∈Γ23\Γ/Γ′

H∗(Γ12,x, κZ ◦ ad(x))

= H∗(C6,Z)(4) ⊕H∗(C2,Z)(58)

H∗(Γ34, Ind Γ
Γ′(κZ)) =

⊕
x∈Γ34\Γ/Γ′

H∗(Γ34,x, κZ ◦ ad(x))

= H∗(C4,Z)(4) ⊕H∗(C2,Z)(58)

H∗(Γ41, Ind Γ
Γ′(κZ)) =

⊕
x∈Γ41\Γ/Γ′

H∗(Γ41,x, κZ ◦ ad(x))

= H∗(C4,Z)(8) ⊕H∗(C2,Z)(55)

We do the same for the 0-cells.
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|Γi\Γ/Γ′| Equivalent reps Γi,x

P1 62 0 ∼ 8, 2 ∼ 3 Γ1,xk =


C4 for k = 0, 1, 6, 7, 9,

14, 15

C2 otherwise

P2 61 0 ∼ 8, 2 ∼ 3 ∼ 7 Γ2,xk =

C6 for k = 0, 1, 9

C2 otherwise

P3 59 0 ∼ 32 ∼ 40 ∼ 55, 2 ∼ 3 ∼ 7 Γ3,xk =



C6 for k = 0, 1, 8, 9, 17,

27, 29, 33

C4 for k = 54, 60

C2 otherwise

P4 61 0 ∼ 32 ∼ 40, 2 ∼ 3 Γ4,xk =



C4 for k = 0, 1, 6, 7, 8, 9,

14, 15, 16, 17,

19, 21, 27, 29,

30, 31, 33, 35,

37, 41, 42, 44

C2 otherwise
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H∗(Γ1, Ind Γ
Γ′(κZ)) =

⊕
x∈Γ1\Γ/Γ′

H∗(Γ1,x, κZ ◦ ad(x))

= H∗(C4,Z)(7) ⊕H∗(C2,Z)(55)

H∗(Γ2, Ind Γ
Γ′(κZ)) =

⊕
x∈Γ2\Γ/Γ′

H∗(Γ2,x, κZ ◦ ad(x))

= H∗(C6,Z)(3) ⊕H∗(C2,Z)(58)

H∗(Γ3, Ind Γ
Γ′(κZ)) =

⊕
x∈Γ3\Γ/Γ′

H∗(Γ3,x, κZ ◦ ad(x))

= H∗(C6,Z)(8) ⊕H∗(C4,Z)(2) ⊕H∗(C2,Z)(49)

H∗(Γ4, Ind Γ
Γ′(κZ)) =

⊕
x∈Γ4\Γ/Γ′

H∗(Γ4,x, κZ ◦ ad(x))

= H∗(C4,Z)(22) ⊕H∗(C2,Z)(39)

In particular,

E0,2
1 =

⊕
0−cell Pi

H2(Γi, Ind Γ
Γ′(κZ)) ∼= Z/2Z(212) ⊕ Z/3Z(11) ⊕ Z/4Z(31)

E1,2
1 =

⊕
1−cell Pij

H2(Γij, Ind Γ
Γ′(κZ)) ∼= Z/2Z(238) ⊕ Z/3Z(4) ⊕ Z/4Z(12)

Observe that, for fixed i, j and x ∈ Γi\Γ/Γ′, either ΓixΓ′ = ΓijxΓ′, or ΓixΓ′ =∪
y

ΓijyΓ′, for y ∈ Γij\ΓixΓ′, and indeed, this information is given in the tables above.

For example, since Γ2x2Γ′ = Γ2x3Γ′ = Γ2x7Γ′, but x2Γ′, x3Γ′ and x7Γ′ are not equiv-

alent under Γ12, it follows that Γ2x2Γ′ = Γ12x2Γ′∪Γ12x3Γ′∪Γ12x7Γ′. For fixed x and

y, the map

resi,xij,y : H ·(Γi,x,Z) −→ H ·(Γij,y,Z)

is the restriction map in group cohomology, and if the vertex i has edge ij entering

it, and edge il leaving it, then, again for fixed x, the map

H ·(Γi,x,Z) −→
⊕

y1∈Γij\ΓixΓ′

H ·(Γij,y1 ,Z) ⊕
⊕

y2∈Γil\ΓixΓ′

H ·(Γil,y2 ,Z) is

z 7→
(
resi,xij,y1(z),−resi,xil,y2(z)

)
.
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Summing over all 0 and 1-cells, we have the map:

d0,2
1 :

⊕
τ∈(∼\D′)0

⊕
x∈Γτ\Γ/Γ′

H2(Γτ,x,Z) −→
⊕

δ∈(∼\D′)1

⊕
y∈Γδ\Γ/Γ′

H2(Γδ,y,Z)

We shall write d0,2
1 in a more convenient form. Consider the following lattices Λi

and Λij:

Λ1 :=(4Z)(7) ⊕ (2Z)(55) Λ12 :=(2Z)(63)

Λ2 :=(6Z)(3) ⊕ (2Z)(58) Λ23 :=(6Z)(4) ⊕ (2Z)(58)

Λ3 :=(6Z)(8) ⊕ (2Z)(45) ⊕ (4Z)(2) ⊕ (2Z)(4) Λ34 :=(2Z)(53) ⊕ (4Z)(4) ⊕ (2Z)(5)

Λ4 :=(4Z)(22) ⊕ (2Z)(39) Λ41 :=(4Z)(8) ⊕ (2Z)(55)

Define:

Λ• = Λ1 ⊕ Λ2 ⊕ Λ3 ⊕ Λ4 and Λ•• = Λ12 ⊕ Λ23 ⊕ Λ34 ⊕ Λ41

Then,

d0,2
1 : Z(243)/Λ• −→ Z(250)/Λ••

Consider the map d0,2
1 − Λ•• : Z(243) ⊕ Z(250) → Z(250), and if W ⊂ Z(243) ⊕ Z(250), let

prZ(243)(W ) denote the projection of W onto the space Z(243). We have

ker(d0,2
1 ) = prZ(243)(ker (d0,2

1 − Λ••))/Im Λ•

Recall the underlying Sage environment given in Subsection 2.2. We use the

following component maps to determine the kernel of the map d0,2
1 :

A :Z(62)/Λ1 → Z(63)/Λ12 B :Z(61)/Λ2 → Z(63)/Λ12

C :Z(61)/Λ2 → Z(62)/Λ23 D :Z(59)/Λ3 → Z(62)/Λ23

E :Z(59)/Λ3 → Z(62)/Λ34 FF :Z(61)/Λ4 → Z(62)/Λ34

G :Z(61)/Λ4 → Z(63)/Λ41 H :Z(62)/Λ1 → Z(63)/Λ41
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We write the same letter (A,B,C,D,E,FF,G,H) for the corresponding matrix. The

matrix of d0,2
1 takes the form 

A B 0 0

0 C D 0

0 0 E FF

G 0 0 H


Proposition 2.3.5. There is a short exact sequence

0 −→ Z(5) −→ H2(Γ′, κZ) −→ (Z/2)(35) ⊕ (Z/4)(16) ⊕ (Z/12)(9) −→ 0

Proof. Recall the exact sequence (2.19). A very slight modification of the Sage

programme (Appendix A.1) used to calculate H2(Γ′, κQ) in the proof of Proposition

2.2.2 gives

H2(∼ \D′, κZ) ∼= Z(5).

The programme described above yields

ker(d0,2
1 ) ∼= (Z/2)(35) ⊕ (Z/4)(16) ⊕ (Z/12)(9).

2

2.4 Cuspidal cohomology

Suppose that Υ ⊆ Γ is a subgroup of finite index. It is well known [22] that

the quotient 3-fold YΥ := Υ\H is never compact. We can compactify YΥ by adding

a boundary component at each cusp in such a way that the compactification is a

homotopy equivalence. If c is a cusp of Υ, then the subgroup Υc, which stabilizes the

cusp c, has an action on the complex numbers by translations and rotations. The

boundary component for the cusp c is the quotient Υc\C. This kind of compactifi-

cation is known as the Borel-Serre method. Let XΥ denote the compactification of

YΥ.

Let P1(F ) denote the projective line over F . The group Γ acts naturally on F (2)

and hence on P1(F ). It is a classical result which was first observed by Bianchi and

proved by Hurwitz, in 1892, that if F−d is an imaginary quadratic field, then the
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size of the orbit space Γ\P1(F−d) is equal to the class number of F−d. Hence the

set Υ\P1(F ) is finite, and called the set of cusps of Υ. The number of boundary

components forming ∂XΥ is indexed by the cusps of Υ. Following the notation of [12],

for an element D ∈ P1(F ), let BD denote its stabilizer in SL2(F ). If c is a cusp of

Υ, choose a representative Dc ∈ F (2), and define the groups

Υc = BDc ∩Υ

and

U(Υ) =
⊕

c∈Υ\P1(F )

Υc (2.20)

They are independent of the chosen representatives Dc. In general, Υc/{±1} will

not be torsion-free. If it is, it is free abelian of rank 2 [35, p. 507].

Consider the long exact sequence in compactly-supported group cohomology as-

sociated to the pair (Υ, U(Υ)):

· · · → H i
c(Υ,M)→ H i(Υ,M)→ H i(U(Υ),M)→ H i+1

c (Υ,M)→ · · · (2.21)

where H i
c(Υ,M) = H i(Υ, U(Υ),M), and M is any Υ-module.

Definition 2.4.1. The cuspidal cohomology1, H2
cusp(Υ,M), is defined to be the kernel

of the restriction map H2(Υ,M) → H2(U(Υ),M), or equivalently, is defined to be

the image of the map H2
c (Υ,M)→ H2(Υ,M).

Definition 2.4.2. The Eisenstein cohomology, H2
Eis(Υ,M), is defined to be the quo-

tient H2(Υ,M)/H2
cusp(Υ,M) and is isomorphic to the image of the restriction map

H2(Υ,M)→ H2(U(Υ),M).

Sequence (2.21) has a natural analogue in topology, and under favourable condi-

tions - rather than being an analogue - it is exactly the same. The analogue is the

long exact sequence in relative cohomology associated to the pair (XΥ, ∂XΥ):

· · · → H i
c(XΥ,M)→ H i(XΥ,M)→ H i(∂XΥ,M)→ H i+1

c (XΥ,M)→ · · · (2.22)

where, again, H i
c(XΥ,M) = H i(XΥ, ∂XΥ,M), and M is the local system on XΥ

induced by the representation M . Recall that by construction, the embedding YΥ ↪→
1See Appendix A.3 for why this definition is equivalent to the definition of cusp cohomology as

the image of the map (0.5) given in the Introduction.
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XΥ is a homotopy invariance, and there is a spectral sequence (2.3) relating the

cohomology of YΥ (and thus of XΥ) to the cohomology of Υ. In particular, if 6 is

invertible in M , then

H i(XΥ,M) ∼= H i(YΥ,M) ∼= H i(Υ,M).

If, for each cusp c of Υ, we knew that Υc/{±1} were torsion-free, then the boundary

component Sc in ∂XΥ associated to c would be an Eilenberg-Maclane space for

Υc/{±1}, and we would be able to make the correspondence

H i(∂XΥ,M) =
⊕
c

H i(Sc,M) ∼=
⊕
c

H i(Υc/{±1},M) = H i(U(Υ),M)

as long as 2 is invertible in M . In the general case, each Υc acts with fixed points

on the space Sc and the spectral sequence (2.3) relates the cohomology of one with

the other. In the sequel, we shall assume that as well as 6, the size of the stabilizer

subgroups Υc,δ of cells δ in Sc are invertible in the coefficientsM , in order to guarantee

that the exact sequences (2.21) and (2.22) will be the same. In particular, we shall

make use of the isomorphism

H i(∂XΥ,M) ∼= H i(U(Υ),M) for all i ≥ 0

so that

H2
cusp(Υ,M) ∼= ker{H2(XΥ,M) −→ H2(∂XΥ,M)}. (2.23)

2.4.1 Level one

Since the class number of F is one, Γ has one cusp; we can choose the represen-

tative of this unique cusp c ∈ Γ\P1(F ) to be ∞ := [ 1
0 ]. Then

Γ∞ = B∞ ∩ Γ =


ia b

0 i−a

 : a ∈ Z, b ∈ O


In the proof of Lemma 4 in the paper mentioned above [22], it is shown that, in this

case,

XΓ = YΓ ∪ Γ∞\C

That is,

∂XΓ = Γ∞\C (2.24)



Chapter 2. Second cohomology 94

and Γ∞\C is a 2-sphere, which we shall label S∞.

Let Hr = {(z, r) | z ∈ C} be a plane in H, and identify it with C. The group

Γ∞ acts on Hr and Bianchi-Humbert theory [16] gives the following rectangle for a

fundamental domain:{
z ∈ C | 0 ≤ |Re z|C ≤

1

2
, 0 ≤ Im z ≤ 1

2

}
In particular, Γ∞ acts (with fixed points) on H∞ = ∂(H∪P1(C)) and a fundamental

cellular domain is given by S∞:

Q4

Q1

Q3

Q2a′E1E1

e′E3E3

E2d′E2

v v

v v

where,

a′ :=

i 0

0 −i

 , b′ :=

i −i
0 −i

 , c′ :=

−i i− 1

0 i

 , d′ :=

i 1

0 −i

 , e′ :=

1 1

0 1



Up to Γ∞-equivalence, there are four 0-cells, three 1-cells and one 2-cell. The 4

inequivalent vertices (shown on the diagram as dots) are given by Q1 := (0,∞), Q2 :=

(1
2
,∞), Q3 := (1

2
+ i

2
,∞), Q4 := ( i

2
,∞). The two horizontal edges along the top,

E2 and d′E2, are identified via d′ (which fixes the vertex in the middle) and thus

have opposite orientation. The far left vertical edge E3 is identified with the far

right vertical edge e′E3, and thus these edges have the same orientation. The two

horizontal edges along the bottom, E1 and a′E1, are identified via a′ (which fixes the

vertex in the middle) and thus have opposite orientation.

The picture below shows the stabilizers of the cells. Note that the stabilizer of
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the 2-cell is {±1}.

C4
∼= 〈d′〉

C4
∼= 〈a′〉

〈c′〉 ∼= C4

〈b′〉 ∼= C4{±1}

{±1}

{±1}

v v

v v

Let M be an R[Γ]-module (hence an R[Γ∞]-module) for some commutative ring

R in which 2 and 3 are invertible. We shall make the additional assumption that

−Id acts trivially on M . We can use the spectral sequence

Ep,q
1 (M) =

⊕
δ∈(S∞)p

Hq(Γ∞,δ,M)⇒ Hp+q(Γ∞,M) (2.25)

to calculate H2(Γ∞,M). In this case, Ep,q
1 (M) = 0 for q > 0 and the cohomology of

Γ∞ is given by the cohomology of the complex

M<a′>⊕M<b′>⊕M<c′>⊕M<d′> d0,01→ M<−1>⊕M<−1>⊕M<−1> d1,01→ M<−1> (2.26)

With our chosen orientation, the boundary of the 2-cell is given by

E1(1− a′) + E2(1− d′) + E3(1− e′).

This implies that d1,0
1 is the map d1,0

1 (m1 + m2 + m3) = (1 − a′)m1 + (1 − d′)m2 +

(1− e′)m3, so we have

H2(Γ∞,M) =M{±1}/((1− a′)M + (1− d′)M + (1− e′)M)

=M/((1− a′)M + (1− d′)M + (1− e′)M) (2.27)

In particular, if M = C is the trivial module, then H2(Γ∞,C) = C.

The cohomology of the complex (2.26) is also the cohomology of the space S∞ =

∂XΓ, so we have an isomorphism H i(∂XΓ,M) ∼= H i(Γ∞,M). The map

H2(Γ,M) −→ H2(Γ∞,M) (2.28)



Chapter 2. Second cohomology 96

can be calculated using the original fundamental domain for Γ in H. Suppose that

F is defined by

F =

{
(z, r) ∈ H : 0 ≤ |Re(z)|C ≤

1

2
, 0 ≤ |Im(z)|C ≤

1

2
, |z|2C + r2 ≥ 1

}
Then F is a fundamental domain for Γ.

The intersection of F with the unit hemisphere, inside H, is the region enclosed

by the 4 points (−1
2
− i

2
,
√

2
2

), (1
2
− i

2
,
√

2
2

), (1
2

+ i
2
,
√

2
2

), (−1
2

+ i
2
,
√

2
2

). The intersection

of F with the boundary of H ∪ P1(C) at ∞ gives the fundamental cellular domain

S∞ for Γ∞.

Observe that the projection of S∞ onto the bottom face of the fundamental

domain gives the region bounded by the points (−1
2
,
√

3
2

), (1
2
,
√

3
2

), (1
2

+ i
2
,
√

2
2

), (−1
2

+

i
2
,
√

2
2

), and the matrix ( 0 −1
1 0 ) maps one half of this rectangle to the other half, leaving

the line through the points (0, 1) and ( i
2
,
√

2
2

) fixed. The resulting one quarter of the

bottom face is the fundamental cellular domain ∼ \D′ given in Section 2.1.

As a consequence, one can show that the map (2.28) is given by

H2(Γ,M) −→ H2(Γ∞,M)

m+ (MΓ12 +MΓ23 +MΓ34 +MΓ41) 7→

1−

0 −1

1 0

m

+ ((1− a′)M + (1− d′)M + (1− e′)M).

Proposition 2.4.1.

dimC H
2
cusp(Γ, E2,2(C)) = 0 or 1, and

dimC H
2
cusp(Γ, Ind Γ

Γ′(κC) ⊗
C
E2,2(C)) ≥ 8.

Proof. Using Sage, we can calculate that:

H2(Γ∞, E2,2(C)) ∼= C, and

H2(Γ∞, Ind Γ
Γ′(κC) ⊗

C
E2,2(C)) ∼= C(5)

See Appendix A.2 for the code used to do this.

Recall (Proposition 2.2.5) that H2(Γ, E2,2(C)) ∼= C, and H2(Γ, Ind Γ
Γ′(κC) ⊗

C
E2,2(C)) ∼= C(13). The result follows.

2



Chapter 2. Second cohomology 97

Remark 2.4.1. It is of interest to note that if H2
cusp(Γ, E2,2(C)) 6= 0, the 1-dimensional

space of Bianchi modular forms this would give rise to is exhausted by lifts of (twists

of) classical elliptic modular forms (defined over Q), or by forms which arise from

a quadratic extension of F via automorphic induction (see [33] for details). In fact,

Rahm and Şengün [33] have found this to be true for almost all Bianchi groups

SL2(O−d), and for almost all weights Ek,k(C).

Remark 2.4.2. Recall that we calculatedH2(Γ0(p),Q) for some ideals p ⊂ O. It would

be interesting to know whether these cohomology classes are cuspidal or Eisenstein

(when they are nonzero). Şengün has determined the dimension of H2
cusp(Γ0(p),Q)

in the following way.

Let p be a prime ideal in O of residue degree 1. Consider the exact sequence (see

(2.21)):

H1(Γ0(p),Q)→ H1(U(Γ0(p)),Q)→ H2
c (Γ0(p),Q)→ H2

cusp(Γ0(p),Q)→ 0.

The group Γ0(p) has two cusps. Şengün has shown that for each cusp c, H1(Γ0(p)c,Q) =

0. This implies that H1(U(Γ0(p)),Q) = 0, which in turn means that there is an iso-

morphism

H2
c (Γ0(p),Q) ∼= H2

cusp(Γ0(p),Q).

By Lefschetz duality, H2
c (Γ0(p),Q) ∼= H1(Γ0(p),Q), and the latter group is the

abelianisation of Γ0(p), denoted Γ0(p)ab. That is,

dimQ(H2
cusp(Γ0(p),Q)) = rank(Γ0(p)ab).

In [15, p. 51], it is shown that the prime ideal p of residue degree 1 with the

smallest norm which has an infinite abelianisation is p = (11 + 4i). This means that

for each prime ideal p = (1 + 2i), (1 + 4i), (3 + 2i) in our table in Section 2.2,

dimQ(H2
cusp(Γ0(p),Q)) = 0.

We have calculated the cohomology of the group Γ∞ geometrically. It can also

be done algebraically. We have an explicit description of the group Γ∞. Namely, Γ∞

is the group of matrices of the form
(
α β
0 α−1

)
where α ∈ O× and β ∈ O. If we let U∞

be the unipotent subgroup of Γ∞ (i.e. U∞ = UD∞ ∩ Γ∞), then we have an extension

1 −→ U∞ −→ Γ∞ −→ µ4 −→ 1
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(where µ4 is the multiplicative group of 4th roots of unity) and a Hochschild-Serre

spectral sequence

Hp(µ4, H
q(U∞,M)) =⇒ Hp+q(Γ∞,M)

Again, since 2−1 ∈ M , the spectral sequence collapses and the edge maps gives

isomorphisms

H i(Γ∞,M) ∼= H i(U∞,M)µ4 i ≥ 0

The group U∞ is free abelian and generated by e′ and f ′ := ( 1 i
0 1 ). The tensor product

of the two resolutions

0 −→ R[〈e′〉] 1−e′−→ R[〈e′〉] ε−→ R −→ 0

0 −→ R[〈f ′〉] 1−f ′−→ R[〈f ′〉] ε−→ R −→ 0

in which ε is the augmentation map, gives a resolution of U∞, and then it is clear

that the second cohomology is described by

H2(U∞,M) ∼= M/((1− e′)M + (1− f ′)M) (2.29)

Note that equation (2.27) can be re-written as H2(Γ∞,M) ∼= MΓ∞ ; similarly, (2.29)

can be written as H2(U∞,M) ∼= MU∞ . Hence, to show that (2.27) and H2(U∞,M)µ4

are the same, it remains to observe that for any finite groupG, and any representation

V of G over Q,

V G ∼= VG.

2.4.2 Level four

Theorem 2.4.2. Let Γ′ be the congruence subgroup Γ(4)SL2(Z). Then

H2
cusp(Γ

′, κQ) = 0.

Theorem 2.4.2 shall be proved in a number of steps. The first step is the calcu-

lation of H2(U(Γ′), κQ) where U(Γ′) =
⊕

c∈Γ′\P1(F )

Γ′c as defined in (2.20) above. To do

this, we must determine the cusps of Γ′.
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Lemma 2.4.3. A set of representatives for the cusps of Γ′ is given by1

0

 ,
i

1

 ,
−i

1

 ,
2i

1

 ,
 −4

1 + 2i


Proof. Since the class number of F is 1, Γ acts transitively on P1(F ), and we

can make the identification

Γ/Γ∞ ←→ P1(F )

g =

a b

c d

 7−→ g(∞) =

a
c

 . (2.30)

We have seen that there is a set bijection:

Γ′\Γ ∼= SL2(Z/4Z)\SL2(O/4) (2.31)

given by reducing the coefficients of a matrix in Γ modulo 4. The cusps of Γ′ are

therefore in one-to-one correspondence with elements in the double coset space

SL2(Z/4Z)\SL2(O/4)/


iα x

0 i−α

 : α ∈ Z/4Z, x ∈ O/4

 ,

which we shall write as

< i > SL2(Z/4Z)\SL2(O/4)/


1 x

0 1

 : x ∈ O/4

 .

Note the identification

SL2(O/4)/


1 x

0 1

 : x ∈ O/4

 =


u
z

 : u ∈ (O/4)×, z ∈ O/4

 ∪

πz
u

 : z ∈ O/(2 + 2i), u ∈ (O/4)×

 .

That is, since O/4 = (O/4)×∪{±π,±iπ}∪{π2, iπ2}∪{π3}∪{0}, we must have that

|SL2(O/4)/{( 1 x
0 1 ) : x ∈ O/4}| = 8 ∗ 16 + 8 ∗ 8 = 192, and |SL2(O/4)/{

(
iα x
0 i−α

)
:

α ∈ Z/4Z, x ∈ O/4}| = 192/4 = 48.

Let v = ( 0
1 ) ∈ (O/4)2, and consider the stabilizer of v under the action of

SL2(Z/4) < i >, where an element iα ∈< i > acts as v 7→ iαv, and SL2(Z/4) acts
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in the usual way. Then,a b

c d

0

1

 =

 0

iα

 for

a b

c d

 ∈ SL2(Z/4)

⇔ b = 0 and a = d = ±1.

That is, stabSL2(Z/4Z)<i>(v) ∼= {± ( 1 0
c 1 ) : c ∈ Z/4Z}, and has 8 elements, and so the

orbit of v has |SL2(Z/4) < i > |/8 = 24 elements.

Next consider ( i1 ) ∈ (O/4)2. Similarly,a b

c d

i
1

 =

 iα

iα+1

 for

a b

c d

 ∈ SL2(Z/4)

⇔ ai+ b = iα and ci+ d = iα+1.

That is, stabSL2(Z/4Z)<i>(v) ∼= {± ( 1 0
0 1 ) ,± ( 0 1

−1 0 )}, and has 4 elements, so the orbit

of v has |SL2(Z/4) < i > |/4 = 48 elements.

Using the same method, one can show that the orbit of ( −i1 ) has 48 elements, the

orbit of ( 2i
1 ) has 48 elements, and that the orbit of ( 0

1+2i ) has 24 elements. Further-

more, one can check that the elements ( 0
1 ) , ( i1 ) , ( −i1 ) , ( 2i

1 ) , ( 0
1+2i ) are inequivalent

under the action of SL2(Z/4Z) < i >. The preimage of ( 0
1+2i ) under the map (2.31)

is
( −4

1+2i

)
. 2

For each representativeDc ∈ {[ 0
1 ] , [ i1 ] , [ −i1 ] , [ 2i

1 ] ,
[ −4

1+2i

]
}, we must now determine

the group Γ′c. For notational convenience, let us denote the cusp [ x1 ] by x and
[ −4

1+2i

]
by 1 + 2i.

Claim.

Γ′i =

±
1− ia −a

−a 1 + ia

 , ±

i− ib 2− b

−b −i+ ib

 ∣∣∣∣∣ a ≡ 0 (mod 4), b ≡ 1 (mod 4)


The group Γ′i is generated by

1− 4i −4

−4 1 + 4i

 ,

 5 −4i

−4i −3

 ,

0 −1

1 0

 .

Proof of claim. The stabilizer of each cusp c of Γ′ is of the form γΓ∞γ
−1 ∩ Γ′

where γ · ∞ = Dc and Γ∞ is the stabilizer of ∞ in Γ. For Dc = [ i1 ], such a γ equals
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( i −1
1 0 ). Let

( µ α
0 µ−1

)
be in Γ∞, so µ ∈ {1,−1, i,−i} and α ∈ O. Then

γ

µ α

0 µ−1

 γ−1 =

µ−1 − iα iµ− α− iµ−1

−α µ+ iα


If µ = ±1, then

γ

µ α

0 µ−1

 γ−1 =

1− iα −α

−α 1 + iα


and if

(
1−iα −α
−α 1+iα

)
is in Γ′, then we must have α ≡ 0 (mod 4).

If µ = i, then

γ

µ α

0 µ−1

 γ−1 =

−i− iα 2− α

−α i+ iα


and if

( −i−iα 2−α
−α i+iα

)
is in Γ′, then we must have 1 + α ≡ 0 (mod 4), i.e. α ≡

−1 (mod 4).

For µ = −i, the calculation is similar. The second part of the claim follows easily.

2

Lemma 2.4.4. The group Γ′−i is generated by
1 + 4i −4

−4 1− 4i

 ,

−3 −4i

−4i 5

 ,

 0 1

−1 0

 .

The group Γ′2i is generated by−Id,

1− 8i −16

−4 1 + 8i

 ,

 9 −16i

−4i −7

 ,

1− 4i −8

−2 1 + 4i

 .

The group Γ′1+2i is generated by−Id,

5 + 8i 16

3− 4i −3− 8i

 ,

−31 + 16i 64i

16 + 12i 33− 16i

 .

Let us now make a new definition.

Definition 2.4.3. We call a cusp c for Γ′ essential if κQ|Γ′c = 1.

Proposition 2.4.5. The dimension, over Q, of H2(U(Γ′), κQ) is the number of

essential cusps of Γ′.
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Proof. We observed above that for each cusp c, Γ′c acts on Sc and the spectral

sequence (2.3) relates their cohomology. In particular, since 2 is invertible in the

representation κQ, we have

H i(Γ′c, κQ) ∼= H i(Sc, κQ) for all i ≥ 0

Poincaré Duality for closed, orientable 2-dimensional manifolds implies that

H i(Sc, κQ) ∼= H2−i(Sc, κQ)

This means we have an isomorphism

H2(Γ′c, κQ) ∼= H0(Γ′c, κQ).

Hence, we can identify H2 with the Γ′c-coinvariants in κQ. That is,

H2(Γ′c, κQ) =

Q if κQ|Γ′c = 1

0 otherwise

Taking the union over c, we find that the Q-dimension of H2(U(Γ′), κQ) is the number

of essential cusps.

2

Our next step, then, is to determine which cusps of Γ′ are essential.

Lemma 2.4.6. All of the cusps of Γ′ are essential.

Proof. Consider the cusp i. If γ ∈ Γ′i, we must show that κQ(γ) = 1. Since κQ

is a homomorphism, it is sufficient to show that κQ is trivial on the generators of Γ′i.

Now,

κQ

1− 4i −4

−4 1 + 4i

 =

(
−4

1 + 4i

)
F

=

(
−1

1 + 4i

)
F

(
4

1 + 4i

)
F

by Proposition 1.2.5 (1)

=

(
i

1 + 4i

)2

F

(
2

1 + 4i

)2

F

by Proposition 1.2.5 (1)

= 1.
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Furthermore,

κQ

 5 −4i

−4i −3

 =

(
−4i

3

)
F

=

(
−1

3

)
F

(
i

3

)
F

(
4

3

)
F

by Proposition 1.2.5 (1)

=

(
i

3

)
F

by Proposition 1.2.5 (1)

= (−1)
9−1
4 by Lemma 1.2.6

= 1.

Clearly,

κQ

0 −1

1 0

 = 1.

Thus, the cusp i is essential.

Consider the cusp −i.

κQ

1 + 4i −4

−4 1− 4i

 =

(
−4

1− 4i

)
F

=

(
−1

1− 4i

)
F

(
4

1− 4i

)
F

by Proposition 1.2.5 (1)

=

(
i

1− 4i

)2

F

(
2

1− 4i

)2

F

by Proposition 1.2.5 (1)

= 1.

κQ

−3 −4i

−4i 5

 =

(
−4i

5

)
F

=

(
−1

5

)
F

(
4

5

)
F

(
i

5

)
F

by Proposition 1.2.5 (1)

=

(
i

5

)
F

by Proposition 1.2.5 (1)

= (−1)
25−1

4 by Lemma 1.2.6

= 1.

Obviously, κQ (( 0 1
−1 0 )).
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Next, consider the cusp 2i. Clearly, κQ(−Id) = 1. We have

κQ

1− 8i −16

−4 1 + 8i

 =

(
−4

1 + 8i

)
F

=

(
−1

1 + 8i

)
F

(
4

1 + 8i

)
F

(
i

5

)
F

by Proposition 1.2.5 (1)

= 1.

κQ

 9 −16i

−4i −7

 =

(
−4i

−7

)
F

=

(
i

−7

)
F

by Proposition 1.2.5 (1)

= (−1)
49−1

4 by Lemma 1.2.6

= 1.

Note that
(

1−4i −8
−2 1+4i

)
/∈ Γ(4). Rather,1− 4i −8

−2 1 + 4i

 =

17− 4i −8

−4− 8i 1 + 4i

1 0

2 1


where

(
17−4i −8
−4−8i 1+4i

)
∈ Γ(4), and ( 1 0

2 1 ) ∈ SL2(Z). Thus,

κQ

17− 4i −8

−4− 8i 1 + 4i

 =

(
−4− 8i

1 + 4i

)
F

=

(
−4

1 + 4i

)
F

(
1 + 2i

1 + 4i

)
F

=

(
1 + 2i

1 + 4i

)
F

=

(
−2i

1 + 4i

)
F

by Proposition 1.2.5 (3)

=

(
−1

1 + 4i

)
F

(
1 + i

1 + 4i

)2

F

= 1.

Finally, take 1 + 2i. We can write5 + 8i 16

3− 4i −3− 8i

 =

21 + 8i 16

−12i −3− 8i

 1 0

−1 1

 ,
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and,

κQ

21 + 8i 16

−12i −3− 8i

 =

(
−12i

−3− 8i

)
F

=

(
3i

−3− 8i

)
F

=

(
3

−3− 8i

)
F

(
i

−3− 8i

)
F

=

(
−8i

−3− 8i

)
F

=

(
1 + i

−3− 8i

)6

F

= 1.

Moreover,

κQ

−31 + 16i 64i

16 + 12i 33− 16i

 =

(
16 + 12i

33− 16i

)
F

=

(
−21i

33− 16i

)
F

=

(
−i

33− 16i

)
F

(
7

33− 16i

)
F

(
3

33− 16i

)
F

= (−1)
1345−1

4

(
7

N(33− 16i)

)
Q

(
3

N(33− 16i)

)
Q

=

(
7

5

)
Q

(
7

269

)
Q

(
3

5

)
Q

(
3

269

)
Q

=

(
7

269

)
Q

(
3

269

)
Q

= 1.

This concludes the proof. 2

Recall the exact sequence (2.21):

· · · −→ H2
c (Γ′, κQ) −→ H2(Γ′, κQ)

res−→ H2(U(Γ′), κQ) −→ H3
c (Γ′, κQ) −→ · · ·

We are interested in H2
cusp(Γ′, κQ) := ker{res : H2(Γ′, κQ) → H2(U(Γ′), κQ)}. In

Section 2.2 we proved that the dimension of H2(Γ′, κQ) is 5 (Proposition 2.2.2),

and we have just shown that H2(U(Γ′), κQ) is of the same dimension. It remains to

observe, by Poincaré duality for the 3-dimensional manifold XΓ′ , that H3
c (Γ′, κQ) = 0,
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to show that the restriction map is a surjection, and therefore an injection. That is,

H2
cusp(Γ′, κQ) = 0. This concludes the proof of Theorem 2.4.2.

There is an alternative, geometric, way to prove Theorem 2.4.2, using the follow-

ing proposition. First we need a geometric version of Shapiro’s Lemma.

Lemma 2.4.7.

H2(Γ∞, Ind Γ
Γ′(κQ)) ∼=

⊕
c ∈Γ′\P1(F )

H2(Γ′c, κQ).

Proof. Consider IndΓ
Γ′(κQ) as a Γ∞-module. There is a Γ∞-isomorphism:

IndΓ
Γ′(κQ) ∼=

⊕
g∈Γ′\Γ/Γ∞

IndΓ∞
Γ∞∩gΓ′g−1(κQ ◦ ad(g)),

where ad(g) is the automorphism of Γ′ given by

ad(g)(γ′) := g−1γ′g.

Therefore,

H2(Γ∞, Ind Γ
Γ′(κQ)) ∼=H2(Γ∞,

⊕
g∈Γ′\Γ/Γ∞

IndΓ∞
Γ∞∩gΓ′g−1(κQ ◦ ad(g)))

∼=
⊕

g∈Γ′\Γ/Γ∞

H2(Γ∞, IndΓ∞
Γ∞∩gΓ′g−1(κQ ◦ ad(g))). (2.32)

Since there are isomorphisms [7]

IndGK(M) ∼= IndGgKg−1(gM) for groups G,K and a K-module M, and,

H2(gKg−1,M) ∼= H2(K,M) for any g ∈ G,K ⊂ G, and G-module M,

we have

IndΓ∞
Γ∞∩gΓ′g−1(κQ ◦ ad(g)) ∼= Indg

−1Γ∞g
g−1Γ∞g∩Γ′(κQ) and, (2.33)

H2(Γ∞, Indg
−1Γ∞g
g−1Γ∞g∩Γ′(κQ)) ∼= H2(g−1Γ∞g, Indg

−1Γ∞g
g−1Γ∞g∩Γ′(κQ)). (2.34)
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Putting (2.32), (2.33), and (2.34) together yields:

H2(Γ∞, Ind Γ
Γ′(κQ)) ∼=

⊕
g∈Γ′\Γ/Γ∞

H2(Γ∞, Indg
−1Γ∞g
g−1Γ∞g∩Γ′(κQ))

∼=
⊕

g∈Γ′\Γ/Γ∞

H2(g−1Γ∞g, Indg
−1Γ∞g
g−1Γ∞g∩Γ′(κQ))

∼=
⊕

g∈Γ′\Γ/Γ∞

H2(g−1Γ∞g ∩ Γ′, κQ) by Lemma 2.1.7

∼=
⊕

g∈Γ′\Γ/Γ∞

H2(Γ′c, κQ) where g−1∞ = c

∼=
⊕

c∈Γ′\P1(F )

H2(Γ′c, κQ).

To see the last isomorphism, recall the identification (2.30). This implies that

there is a bijective map

Γ′\Γ/Γ∞ −→Γ′\P1(F ) = {cusps of Γ′}

g−1 7−→g−1∞ =

a
c

 where g =

a b

c d

 .

2

Proposition 2.4.8.

H2
cusp(Γ

′, κQ) ∼= Ker(H2(XΓ, Ind(κQ)) −→ H2(∂XΓ, Ind(κQ))).

Proof. By Lemma 2.4.7, there is a commutative square:

H2(Γ∞, IndΓ
Γ′(κQ))

∼= //

∼=
��

⊕
c ∈Γ′\P1(F )

H2(Γ′c, κQ)

∼=
��

H2(∂XΓ, IndΓ
Γ′(κQ)) // H2(∂XΓ′ , κQ)

in which the vertical arrows and the top horizontal arrows are isomorphisms,

hence

H2(∂XΓ, IndΓ
Γ′(κQ)) −→ H2(∂XΓ′ , κQ) (2.35)

is an isomorphism.

Recall the formula (2.23) for any finite index subgroup Υ ⊂ SL2(O). In particular,

H2
cusp(Γ′, κQ) ∼= ker{H2(XΓ′ , κQ) −→ H2(∂XΓ′ , κQ)}. (2.36)
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But, since 6 is invertible in κQ, and by Lemma 2.1.7,

H2(XΓ′ , κQ) ∼= H2(Γ′, κQ) ∼= H2(Γ, IndΓ
Γ′(κQ)) ∼= H2(XΓ, IndΓ

Γ′(κQ)). (2.37)

Equations (2.35), (2.36) and (2.37) give

H2
cusp(Γ′, κQ) ∼= Ker(H2(XΓ, Ind(κQ)) −→ H2(∂XΓ, Ind(κQ))).

2

Proposition 2.4.8 allows us to check our calculation of H2
cusp(Γ′, κQ) using a Sage

programme. We did this (Appendix C) and the result agrees with our original finding

that H2
cusp(Γ′, κQ) = 0.



Chapter 3

A ramified genuine Hecke algebra

Recall the definition (1.11) of Kπ(4). We want to consider Kπ(4) as a subgroup

of SL2(Fπ). Thus, if a ∈ Oπ, let ã be its reduction modulo (4), and put

Kπ(4) =


a b

c d

∣∣∣∣∣ ã, b̃, c̃, d̃ ∈ Z/4Z, ad− bc = 1

 .

Let K̂π(4) be the lift of Kπ(4) to SL2(Fπ).

Let $ be an automorphic representation of SL2(A) containing a non-zero vector

which is fixed by K̂π(4). The Hecke algebra H(SL2(Fπ), K̂π(4)) acts on the subspace

of K̂π(4)-fixed vectors. The complicated part of this Hecke algebra is the finite-

dimensional subalgebra H(SL2(Oπ), K̂π(4)). The aim of this chapter is twofold.

We shall completely describe the subalgebra H(SL2(Oπ), K̂π(4)) and list its gen-

uine representations. Moreover, in the case that $ corresponds, via Theorem 1.4.15,

to a level one automorphic cuspidal representation of SL2(A), we shall determine

the action of H(SL2(Oπ), K̂π(4)) on the K̂π(4)-fixed vectors.

In brief summary, our results are as follows.

The “genuine quotient” of H(SL2(Oπ), K̂π(4)) is 14-dimensional as a vector space

over C. As a ring, it is isomorphic to C(6)×M2(C)(2) (Theorems 3.3.7 and 3.3.8). In

particular, it has six 1-dimensional representations and two irreducible 2-dimensional

representations. We describe all these representations explicitly. If $ corresponds to

a level one cuspidal representation of SL2(A), then the subspace of K̂π(4)-fixed vec-

tors is 2-dimensional: it is a sum of two 1-dimensional representations ofH(SL2(Oπ), K̂π(4))

(Theorem 3.4.4). We find which 1-dimensional representations arise in this way.
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Analogous results (over Q rather than Q(i)) have been obtained by Loke and

Savin [28]; our approach is based on their method. However, since the calculations

in our case are rather long, we have used Sage, whereas their work is done entirely

by hand. One fundamental difference between the case over Q and over Q(i) is that

there are two classes of “unramified” representation of SL2(Q2) and only one class of

“unramified” representation of SL2(Fπ) . More precisely, since the centre of SL2(Q2)

is C4 with generator
{( −1 0

0 −1

)
, 1
}

, there are two distinct genuine central characters

of an unramified representation. On the other hand, the centre of SL2(Fπ) is C2×C2

with generators
{( −1 0

0 −1

)
, 1
}

and {( 1 0
0 1 ) ,−1}. If $π is a level one principal series

representation, then the value of the central character of $π is 1 on
{( −1 0

0 −1

)
, 1
}

since this element is in K̂π(4). Thus there is a unique genuine central character (cf.

Remark 3.4.1 below).

3.1 Preliminaries

Suppose, for the moment, that G is a locally compact group, and H is a compact

open subgroup.

Definition 3.1.1. Let H(G,H) denote the abelian group of functions given by:

H(G,H) = {f : G→ C | f(hgh′) = f(g) for all h, h′ ∈ H, g ∈ G; f is locally constant

and supported on only finitely many double cosets HgH}

It follows from the definition that every f ∈ H(G,H) is a finite sum of char-

acteristic functions 1HgH of double cosets HgH. In what follows, we will blur the

distinction between the function 1HgH and the double coset HgH.

We say that G commensurates H (written G ∼ H) if for every g ∈ G, gHg−1∩H

has finite index in both gHg−1 and H. If H is compact and open in G, then G

commensurates H (for any g ∈ G, gHg−1 ∩ H is compact and open in H, so [H :

gHg−1 ∩H] <∞, and [gHg−1 : gHg−1 ∩H] = [H : gHg−1 ∩H]).



Chapter 3. A ramified genuine Hecke algebra 111

Lemma 3.1.1. If g ∈ G, there are disjoint coset decompositions

HgH =
d⋃
i=1

Hαi with d = [H : H ∩ g−1Hg]

HgH =
e⋃
j=1

βjH with e = [H : H ∩ gHg−1]

Note that d = e if G is unimodular.

Proof. Since [H : gHg−1 ∩H] <∞, we can write

H =
d⋃
i=1

(H ∩ gHg−1)hi

Therefore,

(g−1Hg)H =
d⋃
i=1

(g−1Hg)hi and

HgH =
d⋃
i=1

Hghi

To prove that the single coset decomposition is disjoint, suppose that Hghi = Hghj.

Then hih
−1
j ∈ g−1Hg ∩H so i = j. The second relation is proved in the same way.

2

Lemma 3.1.1 allows us to define a multiplication on the group H(G,H). If

HαH,HβH ∈ H(G,H), write HαH = ∪di=1Hαi and HβH = ∪ej=1Hβj. Then

we define H(G,H)×H(G,H)→ H(G,H), (HαH,HβH) 7→ HαH ∗HβH by

HαH ∗HβH =
∑
γ

c(γ)HγH where

c(γ) = number of pairs (i, j) such that Hαiβj = Hγ for a fixed γ, (3.1)

and the sum is extended over all double cosets HγH ⊂ HαHβH. Note that c(γ)

is independent of the choice of representatives αi, βj and γ. We can define a multi-

plication on the whole of H(G,H) by extending C-linearly. One can show that the

multiplication is associative and that the trivial double coset H1H is the identity.

Definition 3.1.2. The degree of a double coset, deg(HαH), is the number of single

cosets Hαi inside HαH.
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We can extend this notion to the C-algebra H(G,H): for a general element∑
k

ckHαkH, let

deg

(∑
k

ckHαkH

)
=
∑
k

ck deg(HαkH)

Proposition 3.1.2. The function deg: H(G,H)→ C is an algebra homomorphism.

We call H(G,H) the Hecke algebra of G with respect to H.

Suppose that H1, H2 are two subgroups of G, such that H1 /H2. If g ∈ G, we can

write an H2-double coset H2gH2 as a (not necessarily disjoint) union of H1-double

cosets. First, write H2 = ∪ni=1 H1gi = ∪ni=1 giH1. Then,

H2gH2 =
n⋃
i=1

H1gigH2

=
n⋃
j=1

n⋃
i=1

H1giggjH1.

Thus we can define a map

H(G,H2) −→ H(G,H1) (3.2)

H2gH2 7−→
n∑
j=1

n∑
i=1

H1giggjH1. (3.3)

The Hecke algebra we shall be interested in is the case where v is a finite place

of F , G = SL2(Fv) and H = K̂v is a compact open subgroup. In the case that K̂v is

maximal, we already know the structure of H(SL2(Fv), K̂v).

Proposition 3.1.3. If K̂v = ŜL2(Ov), then the “genuine quotient” ofH(SL2(Fv), K̂v)

is a polynomial ring with one generator. In particular, the genuine quotient of

H(SL2(Fv), K̂v) is finitely generated and commutative.

Proposition 3.1.3 is a special case of [29, Theorem 10.1 ].

Recall that if v is finite and odd, the extension

1 −→ µ2 −→ SL2(Fv) −→ SL2(Fv) −→ 1 (3.4)

splits on the maximal compact subgroup SL2(Ov). By Proposition 3.1.3, the Hecke

algebra H(SL2(Fv), ŜL2(Ov)) is completely understood; in particular, its irreducible

representations are 1-dimensional. On the other hand, if v = π, recall that (3.4) does

not split over SL2(Ov), but rather over the smaller group Kπ(4). Thus we can form

H(SL2(Oπ), K̂π(4)), and apply the following:
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Proposition 3.1.4 (Bernstein). If K̂v is an arbitrary compact open subgroup, then

H(SL2(Fv), K̂v) is finitely generated as a module over its centre.

We shall spend Sections 3.2 and 3.3 calculating H(SL2(Oπ), K̂π(4)).

3.2 Calculation of H(SL2(Oπ), Kπ(4))

As a first approximation to H(SL2(Oπ), K̂π(4)), we shall calculate the algebra

H = H(SL2(Oπ), Kπ(4)).

For the remainder of this thesis, let G denote the group SL2(O/4), let H denote

the group SL2(Z/4), let T = {
(
a 0
0 a−1

)
| a ∈ (O/4)×} be the diagonal subgroup of

G and let Z = {( b 0
0 b ) | b ∈ (O/4)×, b2 = 1} be its centre. Note that G was used

to denote the group GL2 in Chapter 1 and an arbitrary locally compact group in

Section 3.1; we hope the overlap in notation will not cause confusion.

Lemma 3.2.1. There is an isomorphism of Hecke algebras

H ∼= H(G,H).

Proof. We saw (2.17) that there is a set bijection

SL2(O)/SL2(O, 4)SL2(Z) ∼= SL2(O/4)/SL2(Z/4).

On the other hand, it is clear that

SL2(O)/SL2(O, 4)SL2(Z) ∼= SL2(Oπ)/SL2(Oπ, 4)SL2(Z2).

2

There is a normal chain of groups

H C ZH C TH. (3.5)

Define the elements

t =

2 + i 0

0 2− i

 ∈ T, and z =

1 + 2i 0

0 1 + 2i

 ∈ Z,
Lemma 3.2.2. There are disjoint coset decompositions

TH = ZH ∪ ZHt and ZH = H ∪Hz.
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Proof. First note that |H| = 6 ∗ 8, |T | = 8 and |Z| = 4. Thus,∣∣∣∣THZH
∣∣∣∣ =
|TH|
|ZH|

=
(|T | |H| / |T ∩H|)
(|Z| |H| / |Z ∩H|)

=
(|T | / |T ∩H|)
(|Z| / |Z ∩H|)

=
8 ∗ 2

4 ∗ 2
= 2.

We have

T =


±1 0

0 ±1

 ,

±i 0

0 ∓i

 ,

±(1 + 2i) 0

0 ±(1 + 2i)

 ,

±(2 + i) 0

0 ∓(2− i)


= Z ∪


±i 0

0 ∓i

 ,

±(2 + i) 0

0 ∓(2− i)

 ,

and i 0

0 −i

2 + i 0

0 2− i

−1

=

−1 + 2i 0

0 −1 + 2i

 ∈ Z.
Hence,

Z

i 0

0 −i

 = Z

2 + i 0

0 2− i

 .

For the second part of the lemma, observe that∣∣∣∣ZHH
∣∣∣∣ =

∣∣∣∣ Z

H ∩ Z

∣∣∣∣ =
|Z|
|H ∩ Z|

=
4

2
= 2,

and

ZH = H ∪


±(1 + 2i) 0

0 ±(1 + 2i)

 .

Note that z is the only non-trivial representative of ZH/H since

H

1 + 2i 0

0 1 + 2i

 = H

−(1 + 2i) 0

0 −(1 + 2i)

 .

2

The chain (3.5) induces maps (cf. (3.2))

H(G, TH) −→ H(G,ZH)

THgTH 7→ ZHgZH ∪ ZHtgZH ∪ ZHgtZH ∪ ZHtgtZH and (3.6)

H(G,ZH) −→ H(G,H)

ZHgZH 7→ HgH ∪HgzH (3.7)
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It follows that the structure of H(G,H) as a vector space can be determined if we

know that of H(G, TH) and H(G,ZH). This is the method we employ.

In what follows, if x ∈ G is a matrix, we shall write x̂ for a double coset. Whether

this double coset is THxTH,ZHxZH or HxH, shall be clear from the context.

Proposition 3.2.3. The Hecke algebraH(G, TH) is commutative. It is 4-dimensional

as a vector space over C, with basis 1̂, x̂, ŷ, û given by the following matrices:

1 =

1 0

0 1

 ; x =

1 π

0 1

 ; y =

1 π2

0 1

 ; u =

 1 π

π3 1

 .

Its multiplication table is:

1 x y u

1 1 x y u

x x 6+2x+2y+2u x+2u 2x+4y+2u

y y x+2u 3+2y 2x+u

u u 2x+4y+2u 2x+u 6+2x+2y+2u

Proof of Proposition 3.2.3. Recall from Lemma 2.2.3 that a set of left coset

representatives for G/H is given by the set {aibj for 1 ≤ i, j ≤ 8} where {ai} are the

elements of SL2(O/4, 1 + i)/SL2(O/4, 2) and {bj} are the elements of SL2(O/4, 2 +

2i). Taking equivalence classes under T , one can easily show that a set of coset

representatives for the quotient G/TH is given by {cidj for 1 ≤ i, j ≤ 4} where ci ∈

‘THquotient1mmmm’ below, and dj ∈ ‘THquotient3mmmm’ below.

THquotient1mmmm = [mmmm([1,0,0,1]), mmmm([1,1+i,0,1]),

mmmm([1,1+i,1+i,1+2*i]), mmmm([1,0,1+i,1])]

THquotient3mmmm = [mmmm([1,0,0,1]), mmmm([1,2+2*i,0,1]),
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mmmm([1,0,2+2*i,1]), mmmm([1,2+2*i,2+2*i,1])]

THsinglecosets = [c*d for c in THquotient1mmmm for d in THquotient3mmmm]

Therefore, |G/TH| = 16. We must now determine a set of representatives for

TH\G/TH. Let g1 and g2 belong to ‘THsinglecosets’. Then the double coset

THg1TH is equal to the double coset THg2TH if and only if there is an ele-

ment h ∈ TH such that hg1TH = g2TH; indeed, this happens if and only if

(hg1)−1g2 ∈ TH.

We claim that a set of representatives for TH\G/TH is given by:
1 0

0 1

 ,

1 π

0 1

 ,

1 π3

0 1

 ,

 1 π

π3 1


The following Sage check:

def leftrep(g):

ginverse = g.adjoint()

for x in THsinglecosets:

if ginverse*x in TH:

return x

returned, for example, that

TH

1 π3

0 1

TH = TH

 1 0

π3 1

TH and

TH

1 π

0 1

TH = TH

1 −π

0 1

TH = TH

1 0

π 1

TH.

Finally, we can check that we have the correct number of double cosets in the

space TH\G/TH by checking the degree of each double coset. By Lemma 3.1.1,

deg(THgTH) = [TH : TH ∩ g−1THg]. The following algorithm:

x = mmmm([1,1+i,0,1])

y = mmmm([1,2+2*i,0,1])

u = mmmm([1,1+i,2+2*i,1])

THdoublecosets = [mmmm([1,0,0,1]), x,y,u]
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for g in THdoublecosets:

ginverse = g.adjoint()

c = 0

for h in TH:

test = ginverse*h*g

if test in TH:

c = c+1

degree = (4*48)/c

print([g, degree])

gave the output:1 0

0 1

 , 1

 ;

1 π

0 1

 , 6

 ;

1 π3

0 1

 , 3

 ;

 1 π

π3 1

 , 6


which verifies the claim. Hence we have shown that H(G, TH) is a 4-dimensional

vector space with basis 1̂, x̂, ŷ, û.

By the proof of Lemma 3.1.1, we know that a double coset can be written as a

disjoint union of single right cosets

THgTH =
⋃
i

THghi where hi ∈ TH/(TH ∩ gTHg−1)

so to multiply the double cosets, we must find specific representatives for TH/(TH∩

gTHg−1) for each representative g in TH\G/TH. Again using Sage, we found the

following data:

THxTH =
6⋃
i=1

THxhi for

hi ∈


1 0

0 1

 ,

1 0

1 1

 ,

i 0

0 −i

 ,

i i

i 0

 ,

1 −1

1 0

 ,

i 0

i −i

 ;

THyTH =
3⋃
j=1

THyhj for

hj ∈


1 0

0 1

 ,

1 0

1 1

 ,

1 −1

1 0

 ;
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and

THuTH =
6⋃
i=1

THuhi for

hi ∈


1 0

0 1

 ,

i 0

0 −i

 ,

0 i

i 0

 ,

0 −1

1 0

 ,

i 0

i −i

 ,

1 0

1 1

 .

Recall the definition of multiplication in the Hecke algebra (3.1). The following

code multiplies the double cosets:

righthforx = [mmmm([1,0,0,1]),mmmm([1,0,1,1]),mmmm([i,0,0,-i]),

mmmm([i,i,i,0]),mmmm([1,-1,1,0]),mmmm([i,0,i,-i])]

righthfory = [mmmm([1,0,0,1]),mmmm([1,0,1,1]),mmmm([1,-1,1,0])]

righthforu = [mmmm([1,0,0,1]),mmmm([i,0,0,-i]),mmmm([0,i,i,0]),

mmmm([0,-1,1,0]),mmmm([i,0,i,-i]),mmmm([1,0,1,1])]

for h1 in righthforx:

for h2 in righthfory:

answer = x*h1*y*h2

for b in TH:

for jj in range(4):

if mmmm(b*answer) == THdoublecosets[jj]:

print(jj)

For example, the above code, as written, gave the output [1, 3, 3]. That is,

x̂ ∗ ŷ = x̂+ 2û

as claimed. The other relations were calculated in the same fashion. 2

Observe that insideH(G, TH) we have the ring C[ŷ]/(ŷ2−2ŷ−3) = C[ŷ]/(ŷ+1)⊕

C[ŷ]/(ŷ− 3). It follows that the eigenvalues of ŷ on any representation of H(G, TH)

are −1 and 3. Moreover, since H(G, TH) is commutative, all of its irreducible

(complex) representations are 1-dimensional. In fact, its representation theory can

be described by the following character table.
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x y u

χ1 2 -1 -2

χ2 -2 -1 2

χ3 6 3 6

χ4 -2 3 -2

Proposition 3.2.3, as well as the character table above, completely describes

H(G, TH). We turn now to the Hecke algebra H(G,ZH).

Define new matrices:

tx = t ∗ x,

xt = x ∗ t,

txt = t ∗ x ∗ t,

ty = t ∗ y,

tu = t ∗ u.

Proposition 3.2.4. The Hecke algebra H(G,ZH) is 10-dimensional as a vector

space over C, with basis

{1̂, t̂, x̂, t̂x, x̂t, ˆtxt, ŷ, t̂y, û, t̂u}

The algebra H(G,ZH) is non-commutative. Its multiplication table is:
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Proof of Proposition 3.2.4. As mentioned above, the vector space structure

of H(G,ZH) can be computed using the structure of H(G, TH). Recall (3.6) that

each TH-double coset can be written as a union of ZH-double cosets: if g ∈ G, then

THgTH = ZHgZH ∪ ZHtgZH ∪ ZHgtZH ∪ ZHtgtZH

We must determine such decompositions for all the double cosets in H(G, TH). It

is straightforward to show that there are disjoint unions:

TH = ZH ∪ ZHt (3.8)

THyTH = HZyHZ ∪HZytHZ (3.9)

THxTH = HZxHZ ∪HZxtHZ ∪HZtxHZ ∪HZtxtHZ (3.10)

THuTH = HZuHZ ∪HZtuHZ (3.11)

For example, we know a priori, that THyTH = ZHyZH ∪ ZHtyZH ∪ ZHytZH ∪

ZHtytZH. However, in G, yt = ty and so tyt = y. Thus THyTH = ZHyZH ∪

ZHtyZH. Suppose that ZHyZH = ZHtyZH. Then there must be h1, h2 ∈ H

such that y = h1ztyh2. However, if we reduce the matrices in Z modulo π3, we are

left with {±Id}; reducing the matrices in H modulo π3 does nothing. On the other

hand,

ty =

2 + i 2 + 2i

0 2− i

 ≡
−i 0

0 i

 (mod π3) and

y =

1 2 + 2i

0 1

 ≡
1 0

0 1

 (mod π3),

and there are no elements h1, h2 ∈ H such that h1tyh2 = y. Thus our original

assumption was incorrect: ZHyZH is not equal to ZHtyZH.

Decompositions (3.8)-(3.11) yield the 10-dimensional basis of H(G,ZH). The

algebra structure can be computed using minor modifications of the code given in

the proof of Proposition 3.2.3 (see Appendix B.1). The non-commutativity is clear

from the multiplication table.

2
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Finally, we shall calculate H = H(G,H). Define

tz = t ∗ z,

yz = y ∗ z,

ytz = y ∗ tz.

Theorem 3.2.5. The Hecke algebra H is non-commutative. It is 14-dimensional as

a vector space, with basis the set

{1̂, ẑ, t̂, t̂z, x̂, x̂t, t̂x, ˆtxt, ŷ, ŷz, ŷt, ˆytz, û, ût}.

Overleaf is its multiplication table.
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Proof of Theorem 3.2.5. Note that, since HZ = H ∪ Hz, if ĝ ∈ H(G,ZH),

then either

HZgHZ =HgH, or there is a disjoint union,

HZgHZ =HgH ∪HgzH.

One can show that if g = u, ut, txt, x, tx, xt, then HZgHZ = HgH, whereas for

g = 1, y, yt, t we have a disjoint union HZgHZ = HgH ∪ HgzH. In other words,

H is 14-dimensional as a C-vector space. To see this, first observe that

HZgHZ = HgH ⇒ HZgtHZ = HgtH, (3.12)

HZgHZ = HgH ⇒ HZtgHZ = HtgH

HZgHZ = HgH ⇒ HZtgtHZ = HtgtH.

Indeed, suppose that HZgHZ = HgH. Then, HZgtHZ = HZgHtZ = HZgHZt =

HgHt = HgtH. This proves (3.12). The other two relations follow from the same

arguments. Hence, to prove that HZgHZ = HgH for g = u, ut, txt, x, tx, xt, it is

sufficient to show HZgHZ = HgH for g = u, x. Observe, moreover, that

HZgHZ = HgH ⇔ ∃ h1, h2 ∈ H such that g = h1zgh2.

Suppose that g = u. Then

zu =

1 + 2i −1− i

2 + 2i 1 + 2i

 .

Put h1 = ( 0 −1
1 1 ) , h2 = ( −1 −1

1 0 ). We have

h1zuh2 =

0 −1

1 1

1 + 2i −1− i

2 + 2i 1 + 2i

−1 −1

1 0

 =

 1 2 + 2i

1 + i 1

 = u.

Now let g = x.

zx =

1 + 2i −1− i

0 1 + 2i

 .

Put h1 =
( −1 0
−2 −1

)
, h2 = ( 1 0

2 1 ). We have

h1zxh2 =

−1 0

−2 −1

1 + 2i −1− i

0 1 + 2i

1 0

2 1

 =

1 1 + i

0 1

 = x.
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On the other hand, suppose that g = y, and suppose that there exist h1 = ( a bc d )

and h−1
2 =

(
e f
g h

)
, so that y = h1zyh2. Then

h1

1 + 2i 2 + 2i

0 1 + 2i

 =

1 2 + 2i

0 1

h−1
2 .

That is,a b

c d

1 + 2i 2 + 2i

0 1 + 2i

 =

1 2 + 2i

0 1

e f

g h


⇒

a(1 + 2i) a(2 + 2i) + b(1 + 2i)

c(1 + 2i) c(2 + 2i) + d(1 + 2i)

 =

e+ g(2 + 2i) f + h(2 + 2i)

g h


⇒ c(1 + 2i) = g ⇒ c = g = 0 or 2,

⇒ e = a(1 + 2i)⇒ a = e = 0 or 2.

Hence, we get a contradiction, so HZyHZ 6= HyH.

In Sage, we define the basis of double cosets by

Hdoublecosets = [mmmm([1,0,0,1]),z,t,t*z,x,x*t,t*x,t*x*t,y,y*z,

y*t,y*t*z,u,u*t]

To determine the structure of H as an algebra, we must write each H-double coset

as a disjoint union of single H-cosets. There are two cases. If ZHgZH = HgH, and

ZHgZH = ∪ni=1ZHghi, then since ZH = H ∪Hz, we have

HgH =
n⋃
i=1

ZHghi

=
n⋃
i=1

(H ∪Hz)ghi

=
n⋃
i=1

Hghi ∪
n⋃
i=1

Hgzhi.

For example, ZHxZH = ∪3
i=1ZHxhi, so HxH = ∪3

i=1Hxhi ∪ ∪3
i=1Hxzhi. If, on the

other hand, ZHgZH 6= HgH, and ZHgZH = ∪ni=1ZHghi, then

HgH =
n⋃
i=1

Hghi.

Thus the job of finding representatives for H-single cosets is done: the most we

need to do is to multiply the matrices in “littlehdashforg” by z on the left, to form

“righthforg”:
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righthforx1 = [mmmm([1,0,0,1]),mmmm([1,1,1,2]),mmmm([1,0,1,1]),

z,z*mmmm([1,1,1,2]),z*mmmm([1,0,1,1])]

righthforxt1 = [mmmm([1,0,0,1]),mmmm([1,1,1,2]),mmmm([1,0,1,1]),

z,z*mmmm([1,1,1,2]),z*mmmm([1,0,1,1])]

righthfortx1 = [mmmm([1,0,0,1]),mmmm([1,1,1,2]),mmmm([1,0,1,1]),

z,z*mmmm([1,1,1,2]),z*mmmm([1,0,1,1])]

righthfortxt1 = [mmmm([1,0,0,1]),mmmm([1,1,1,2]),mmmm([1,0,1,1]),

z,z*mmmm([1,1,1,2]),z*mmmm([1,0,1,1])]

righthfory1 = [mmmm([1,0,0,1]),mmmm([1,0,1,1]),mmmm([1,-1,1,0])]

righthforyz1 = righthfory1

righthforyt1 = righthfory1

righthforytz1 = righthfory1

righthforu1 = [mmmm([1,0,0,1]),mmmm([1,1,0,1]),mmmm([1,-1,1,0]),

mmmm([0,-1,1,0]),mmmm([1,0,1,1]),mmmm([0,-1,1,1]),z,z*mmmm([1,1,0,1]),

z*mmmm([1,-1,1,0]),z*mmmm([0,-1,1,0]),z*mmmm([1,0,1,1]),

z*mmmm([0,-1,1,1])]

righthfortu1 =[mmmm([1,0,0,1]),mmmm([1,1,0,1]),mmmm([1,-1,1,0]),

mmmm([0,-1,1,0]),mmmm([1,0,1,1]),mmmm([0,-1,1,1]),

z,z*mmmm([1,1,0,1]),z*mmmm([1,-1,1,0]),z*mmmm([0,-1,1,0]),

z*mmmm([1,0,1,1]),z*mmmm([0,-1,1,1])]

Note that to check we have the correct number of single H-cosets inside each

double H-coset, we can use a “degree” argument as exemplified in Appendix B.1.

The following multiplies the double cosets:

for h1 in righthforx1:

for h2 in righthfory1:

answer = x*h1*y*h2

for b in H:

for jj in range(14):

if mmmm(b*answer) == Hdoublecosets[jj]:

print(jj)
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The above example algorithm gave the output [7, 12]. That is, in H,

x̂ ∗ ŷ = ˆtxt+ û.

2

3.3 Calculation of the genuine quotient of

H(SL2(Oπ), K̂π(4))

In Section 3.2, we determined the Hecke algebra H(SL2(Oπ), Kπ(4)). In this

section, we shall modify the method to calculate the metaplectic counterpart of this:

H(SL2(Oπ), K̂π(4)). As in the previous section, we shall show that this Hecke algebra

is isomorphic to the Hecke algebra of a pair of finite groups.

We shall define a central extension G of G = SL2(Oπ/(π
4)) and a lift Ĥ of

the subgroup H = SL2(Z/4Z) of G to G. With this notation, we will have an

isomorphism

H(SL2(Oπ), K̂π(4)) ∼= H(G, Ĥ). (3.13)

3.3.1 An explicit 2-cocycle defined modulo 4

To construct G, we use the following:

Lemma 3.3.1. Let σπ ∈ H2(SL2(Fπ), µ2) be the cohomology class corresponding to

the metaplectic cover of SL2(Fπ). Then there is an element Σ ∈ H2(G, µ2) such that

the inflation of Σ to SL2(Oπ) is equal to the restriction of σπ to SL2(Oπ).

The proof of Lemma 3.3.1 is the realm of K-theory: it follows from the fact that

K2(Oπ) ∼= K2(Fπ), as well as the result that the map

K2(Oπ) −→ K2(Oπ/(π
4))

is surjective. This can be gleaned from [14], although we shall give a new proof of

Lemma 3.3.1 below in Proposition 3.3.2 since we require an explicit formula for the

cocycle Σ.
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Consider the extension

1 −→ µ2 −→ SL2(Oπ)
p−→ SL2(Oπ) −→ 1, (3.14)

which is the restriction to SL2(Oπ) of the extension (1.12) we saw in Chapter 1.

Recall that βπ is the associated normalised cocycle. Suppose that βπ corresponds to

the section τ . That is, suppose that τ is a map τ : SL2(Oπ)→ SL2(Oπ) and, for all

g, g′ ∈ SL2(Oπ),

βπ(g, g′) = τ(g)τ(g′)τ(gg′)−1 (3.15)

By Proposition 1.1.4, τ restricted to Kπ(4) is a homomorphism.

Let SL2(Oπ, 4) denote the subgroup of SL2(Oπ) whose elements are congruent to

the identity modulo (π4). For any g ∈ SL2(Oπ), consider the map

Xg : SL2(Oπ, 4) −→ µ2

α 7−→ τ(g−1αg)(τ(g)−1τ(α)τ(g))−1

This makes sense because τ(g−1αg) and τ(g)−1τ(α)τ(g) have the same image under

p. Using (3.15), we can re-write Xg as

Xg(α) =
βπ(g−1, αg)βπ(α, g)

βπ(g−1, g)

Let R be a set of (left) representatives for the group SL2(Oπ, 4) in SL2(Oπ). If

g ∈ SL2(Oπ), decompose it as g = rh where r ∈ R, and h ∈ SL2(Oπ, 4).

Definition 3.3.1. Let S be the map S : SL2(Oπ)→ SL2(Oπ) given by

S(g) = {g, βπ(r, h)}

where g = rh for r ∈ R and h ∈ SL2(Oπ, 4). Define a cocycle Σ by

Σ : SL2(Oπ)× SL2(Oπ) −→ µ2

Σ(g1, g2) = S(g1)S(g2)S(g1g2)−1 for all g1, g2 ∈ SL2(Oπ).

Since the cocycles βπ and Σ determine the same extension (3.14), they differ by

a 2-coboundary which we shall call ∂Sκ:

Σ = βπ · ∂Sκ where ∂Sκ(g1, g2) = Sκ(g1)Sκ(g2)Sκ(g1g2)−1 for all g1, g2 ∈ SL2(Oπ),

where Sκ(g) = βπ(r, h) when g = rh for r ∈ R, h ∈ SL2(Oπ, 4).
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Proposition 3.3.2. Suppose that Xg(α) = 1 for all g ∈ SL2(Oπ) and for all α ∈

SL2(Oπ, 4). Then, the cocycle Σ is defined on the group SL2(Oπ)/SL2(Oπ, 4) ∼=

SL2(O/4). That is,

Σ(g1, g2) = Σ(g′1, g
′
2) if g1 ≡ g′1 (mod 4) and g2 ≡ g′2 (mod 4).

Thus Σ can be regarded as a 2-cocycle on the finite group G.

Proof. Observe that the function Xg can be re-written:

Xg(α) = {α, 1}g{αg, 1}−1 where αg = g−1αg.

If Xg(α) = 1 for all g ∈ SL2(Oπ) and for all α ∈ SL2(Oπ, 4), then

{αg, 1} = {α, 1}g. (3.16)

If g ∈ SL2(Oπ), write g = rh for r ∈ R and h ∈ SL2(Oπ, 4), and recall that

S(g) = {g, βπ(r, h)}. If γ ∈ SL2(Oπ, 4), then

S(gγ) ={gγ, βπ(r, hγ)} since gγ = r(hγ),

={g, βπ(r, hγ)}{γ, 1}{1, βπ(g, γ)−1}

={g, βπ(rh, γ)βπ(r, h)βπ(h, γ)−1}{γ, 1}{1, βπ(g, γ)−1} by the cocycle identity (1.1)

={g, βπ(g, γ)βπ(r, h)}{γ, 1}{1, βπ(g, γ)−1} since βπ(h, γ) = 1

={g, βπ(g, γ)βπ(r, h)}{1, βπ(g, γ)−1}{γ, 1}

={g, βπ(r, h)}{γ, 1}

=S(g)S(γ).

On the other hand,

S(γg) =S(gγg) = S(g){γg, 1}

=S(g){γ, 1}g by (3.16)

=S(g)S(g)−1{γ, 1}S(g)

={γ, 1}S(g)

=S(γ)S(g).
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Observe that if g ≡ g′ (mod 4) then g′ = gγ for some γ ∈ SL2(Oπ, 4), and

g′ = γ′g for some γ′ ∈ SL2(Oπ, 4). Thus, if g1, g2 ∈ SL2(Oπ) and γ ∈ SL2(Oπ, 4),

then

Σ(γg1, g2) =S(γg1)S(g2)S(γg1g2)−1

={γ, 1}S(g1)S(g2)({γ, 1}S(g1g2))−1

={γ, 1}S(g1)S(g2)S(g1g2)−1{γ, 1}−1

={γ, 1}Σ(g1, g2){γ, 1}−1

=Σ(g1, g2).

Σ(g1, g2γ) =S(g1)S(g2γ)S(g1g2γ)−1

=S(g1)S(g2){γ, 1}(S(g1g2){γ, 1})−1

=S(g1)S(g2){γ, 1}{γ, 1}−1S(g1g2)−1

=Σ(g1, g2).

To finish the proof of Proposition 3.3.2, we must show that the function Xg(α)

is identically 1 for all g ∈ SL2(Oπ) and all α ∈ SL2(Oπ, 4). To prove this, we need a

further result:

Theorem 3.3.3. Let σ be a 1-cocycle on a group L generated by l1, · · · , ln. If σ(li) =

1 for all i, then σ = 1.

One can prove Theorem 3.3.3 by induction.

Lemma 3.3.4. The function Xg(α) takes the value 1 at all α ∈ SL2(Oπ, 4) and all

g ∈ SL2(Oπ).

Proof. We will use the following properties of the function Xg(α):

1. As a function of α, Xg ∈ Hom(SL2(Oπ, 4), µ2). Indeed, if α1, α2 ∈ SL2(Oπ, 4),
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a simple proof gives:

Xg(α1α2) =τ((α1α2)g){τ(α1α2)τ(g)}−1

=τ(αg1α
g
2){τ(α1α2)τ(g)}−1

=τ(αg1)τ(αg2){τ(α1α2)τ(g)}−1

=τ(αg1)τ(αg2){τ(α1)τ(g)τ(α2)τ(g)}−1

=τ(αg1)Xg(α2){τ(α1)τ(g)}−1

=Xg(α1)Xg(α2)

2. As a function of g, Xg ∈ Z1(SL2(Oπ),Hom(SL2(Oπ, 4), µ2)) is a 1-cocycle;

explicitly,

Xg1g2(α) = Xg1(α)Xg2(α
g1).

If α1, α2 ∈ SL2(Oπ, 4), then by property (2),

Xgα1(α2) = Xg(α2)Xα1(g
−1α2g) = Xg(α2). (3.17)

Recall that in Section 1.1, Bπ was used to denote the Borel subgroup of GL2(Fπ).

Suppose that b ∈ Bπ ∩ SL2(Oπ). Then Xb(α) = 1 for all α ∈ SL2(Oπ, 4). Hence by

property (2),

Xgb(α) = Xg(α). (3.18)

Furthermore, if α1 ≡ α2 (mod π6): that is, if α1α
−1
2 ∈ SL2(Oπ, π

6), then

Xg(α1) = Xg(α2) by part (4) of Proposition 1.1.1. (3.19)

Equation (3.17) shows that is it sufficient to prove that Xg(α) is trivial for g in

the coset space G = SL2(Oπ)/SL2(Oπ, 4). Observe that Xg is still a 1-cocycle on G:

if g1, g2 ∈ SL2(Oπ) and α1, α2, β ∈ SL2(Oπ, 4),

Xg1α1g2α2(β) =X
g1g

(α−1)
2 α1α2

(β)

=X
g1g

(α−1)
2

(β)

=Xg1(β)X
g
(α−1)
2

(βg1)

=Xg1(β)Xg2((β
g1)α1)

=Xg1(β)Xg2(β
g1α1)

=Xg1α1(β)Xg2α2(β
g1α1).
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Let B(O/4) be the subgroup of G defined by:

B(O/4) =


a b

0 a−1

 ∣∣∣∣∣ a ∈ (O/4)×, b ∈ O/4


The group G is generated by B(O/4) and the matrix g0 = ( 0 −1

1 0 ). Thus, by Theo-

rem 3.3.3 and equations (3.17) - (3.19), it is sufficient to show that Xg(α) is trivial for

g = g0, and for all αi in a set of generators for the group SL2(Oπ, π
4)/SL2(Oπ, π

6).

A set of generators α1, · · · , α6 for the abelian group SL2(Oπ, π
4)/SL2(Oπ, π

6) is

given by:

α1 =

1 + π4 + iπ6 π6

−π6 1− π4 + iπ6

 , α2 =

1 + iπ4 − iπ6 π6

−π6 1− iπ4 − iπ6

 ,

α3 =

1 π4

0 1

 , α4 =

1 iπ4

0 1

 , α5 =

 1 0

π4 1

 , α6 =

 1 0

iπ4 1

 .

Let α =

a b

c d

 be a general element of SL2(Oπ, π
4)/SL2(Oπ, π

6).

Xg0(α) =
1

(a, b)
v(b)
π (b, d)π(c, d)

v(c)+1
π

if c 6= 0, b 6= 0, and

Xg0(α) =
1

(a, d)π(c, d)
1+v(c)
π

when c 6= 0, b = 0, and

Xg0(α) =
1

(b, d)π(a, b)
v(b)
π

when c = 0.

However, if both c 6= 0 and b 6= 0, then both b and c are squares; if c 6= 0 but b = 0

then both a and d equal 1; if c = 0 then again, a = d = 1. Thus Xg0(αi) = 1 for all

1 ≤ i ≤ 6.

Therefore, Lemma 3.3.4, and hence Proposition 3.3.2, are proved.

2

Observe that we have constructed an extension

1 −→ µ2 −→ G −→ G −→ 1, (3.20)

with an associated 2-cocycle Σ.
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3.3.2 Calculation of the genuine quotient

Consider the double cosets Ĥ{1, 1}Ĥ and Ĥ{1,−1}Ĥ. The latter generates the

group ring C[Ĥ{1,−1}Ĥ, Ĥ{1, 1}Ĥ] which is easily seen to be contained in the centre

of H(G, Ĥ). In fact, there is an isomorphism

C[Ĥ{1,−1}Ĥ, Ĥ{1, 1}Ĥ] −→C⊕ C

Ĥ{1,−1}Ĥ 7−→(1,−1)

Schur’s Lemma [8, p. 430] implies that on any irreducible (complex) representation of

H(G, Ĥ), the double coset Ĥ{1,−1}Ĥ acts as 1 or −1. We shall define the genuine

Hecke algebra H(G, Ĥ)gen to be the quotient of H(G, Ĥ) in which Ĥ{1,−1}Ĥ is

identified with the scalar −1 ∈ C. That is,

H(G, Ĥ)gen = H(G, Ĥ)/
(
Ĥ{g,−1}Ĥ + Ĥ{g, 1}Ĥ

)
.

Thus in H(G, Ĥ)gen, Ĥ{g,−1}Ĥ = −Ĥ{g, 1}Ĥ. If we write ĝ for the double coset

Ĥ{g, 1}Ĥ, then −ĝ shall mean Ĥ{g,−1}Ĥ.

Similarly, put

H = H(SL2(Oπ), K̂π(4))/
(
K̂π(4){g,−1}K̂π(4) + K̂π(4){g, 1}K̂π(4)

)
.

The right-hand side is the quotient ofH(SL2(Oπ), K̂π(4)) in which K̂π(4){1,−1}K̂π(4)

is identified with −1. In analogy with Lemma 3.2.1, we have an isomorphism of rings

H ∼= H(G, Ĥ)gen.

In this section, we shall calculate H.

Recall the extension (3.20). Let p be the map G→ G. The pre-image of a double

coset HgH ⊂ G is a union

p−1(HgH) = Ĥ{g, 1}Ĥ ∪ Ĥ{g,−1}Ĥ. (3.21)

Note that, a priori, the union may or may not be disjoint. However,

Lemma 3.3.5. For each g in a set of representatives for H\G/H, the union (3.21)

is disjoint.
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Proof. For each g ∈ G, there are two cases to consider. Either,

Ĥ{g,−1}Ĥ = Ĥ{g, 1}Ĥ, or

Ĥ{g,−1}Ĥ ∩ Ĥ{g, 1}Ĥ = ∅

Now, Ĥ{g,−1}Ĥ = Ĥ{g, 1}Ĥ if and only if {g,−1} ∈ Ĥ{g, 1}Ĥ. We can write:

Ĥ{g, 1}Ĥ = {{h, 1}{g, 1}{h′, 1} : h, h′ ∈ H}

= {{hg,Σ(h, g)}{h′, 1} : h, h′ ∈ H}

= {{hgh′,Σ(h, g)Σ(hg, h′)} : h, h′ ∈ H}

Hence {g,−1} ∈ Ĥ{g, 1}Ĥ if:

there is an h ∈ H ∩ gHg−1 such that Σ(h, g)Σ(hg, g−1h−1g) = −1. (3.22)

Recall the environment:

F.<i> = NumberField(x^2+1)

R = F.ring_of_integers()

pi = F.ideal(1+i)

k = R.residue_field(pi,’b’)

kk = R.quotient_ring(2,’b’)

kkk = R.quotient_ring(2*pi,’b’)

kkkk = R.quotient_ring(4,’b’)

kkkkk = R.quotient_ring(4*pi,’b’)

M = MatrixSpace(F,2)

m = MatrixSpace(k,2)

mm = MatrixSpace(kk,2)

mmm = MatrixSpace(kkk,2)

mmmm = MatrixSpace(kkkk,2)

The following four algorithms calculate the Hilbert symbol (x, y)π for two integral

elements x, y ∈ Oπ. The first, “wild hilbert symbol pi”, takes an argument x ∈ F×,

and produces the symbol (π, x)π. The second, “wild hilbert symbol i”, takes an

argument x ∈ F×, and gives the output (i, x)π. The third, “wild hilbert symbol

odd”, is defined for two odd elements x, y ∈ F×, and the fourth, “wild hilbert

symbol”, simply assumes that x and y are in F×.
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def wild_hilbert_symbol_pi(x):

val = x.valuation(pi)

newx = x*(1+i)^-val

test = kkk(newx)

while test != 1:

newx = newx *i

test = kkk(newx)

a = newx.trace()/2

b = (newx*-i).trace()/2

return (-1)^((a-b-b^2-1)/4)

def wild_hilbert_symbol_i(x):

val = x.valuation(pi)

newx = x*(1+i)^-val

return (-1)^((newx.norm()-1)/4)

def wild_hilbert_symbol_odd(x,y):

if kk(x) == kk(i):

temp1 = wild_hilbert_symbol_i(y)

else:

temp1 = 1

if kk(y) == kk(i):

temp2 = wild_hilbert_symbol_i(x)

else:

temp2 = 1

return temp1*temp2

def wild_hilbert_symbol(x,y):

valx = x.valuation(pi)

valy = y.valuation(pi)

oddx = x*(1+i)^-valx

oddy = y*(1+i)^-valy
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temp1 = wild_hilbert_symbol_pi(oddx)^valy

temp2 = wild_hilbert_symbol_pi(oddy)^valx

temp3 = wild_hilbert_symbol_odd(oddx, oddy)

return temp1*temp2*temp3

Recall that if g ∈ SL2(Oπ), we can decompose it as g = rh where r belongs to a

set of representatives for SL2(Oπ)/SL2(Oπ, 4) and h ∈ SL2(Oπ, 4). Since the section

S corresponding to the cocycle Σ is defined by

S(g) = {g, βπ(r, h)},

it is necessary to implement both the decomposition of a general element g and the

cocycle βπ. This we do below. For g ∈ SL2(Oπ), “S decomposition(g)” returns a

decomposition g = rep ∗ γ where “rep” is a representative of the congruency class of

g modulo 4, and γ is in SL2(Oπ, 4).

congruencequotient0m = [m([1,0,0,1]),m([0,1,1,0]),m([1,1,0,1]),

m([1,0,1,1]),m([1,1,1,0]),m([0,1,1,1])]

congruencequotient1mm = [mm([1,0,0,1]),mm([1,(1+i),0,1]),

mm([1,0,(1+i),1]),mm([1,(1+i),(1+i),1]),

mm([1+(1+i),(1+i),(1+i),1+(1+i)]),mm([1+(1+i),0,0,1+(1+i)]),

mm([1+(1+i),0,(1+i),1+(1+i)]),mm([1+(1+i),(1+i),0,1+(1+i)])]

congruencequotient2mmm = [mmm([1,0,0,1]),mmm([1,(1+i)^2,0,1]),

mmm([1,0,(1+i)^2,1]),mmm([1,(1+i)^2,(1+i)^2,1]),

mmm([1+(1+i)^2,(1+i)^2,(1+i)^2,1+(1+i)^2]),

mmm([1+(1+i)^2,0,0,1+(1+i)^2]),

mmm([1+(1+i)^2,0,(1+i)^2,1+(1+i)^2]),

mmm([1+(1+i)^2,(1+i)^2,0,1+(1+i)^2])]

congruencequotient3mmmm = [mmmm([1,0,0,1]),mmmm([1,(1+i)^3,0,1]),

mmmm([1,0,(1+i)^3,1]),mmmm([1,(1+i)^3,(1+i)^3,1]),

mmmm([1+(1+i)^3,(1+i)^3,(1+i)^3,1+(1+i)^3]),
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mmmm([1+(1+i)^3,0,0,1+(1+i)^3]),

mmmm([1+(1+i)^3,0,(1+i)^3,1+(1+i)^3]),

mmmm([1+(1+i)^3,(1+i)^3,0,1+(1+i)^3])]

lifts0 = [M([1,0,0,1]),M([0,1,-1,0]),M([1,1,0,1]),M([1,0,1,1]),

M([1,-1,1,0]), M([0,-1,1,1])]

lifts1 = [M([1,0,0,1]),M([1,(1+i),0,1]),M([1,0,(1+i),1]),

M([1+(1+i)^2,1+i,1+i,1]),M([1+(1+i),-(1+i),(1+i),1-(1+i)]),

M([1+(1+i)+(1+i)^2,-3*(1+i)^2,(1+i)^2,1+(1+i)+i*(1+i)^4]),

M([1+(1+i) +(1+i)^2 - 3*(1+i)^3,-3*(1+i)^2,

-i*(1+i)^4 + (1+i) + i*(1+i)^5,1+(1+i)+i*(1+i)^4]),

M([1+(1+i)+(1+i)^2,-3*(1+i)^2,(1+i)^2,1+(1+i)+i*(1+i)^4])

*M([1,1+i,0,1])]

lifts2 = [M([1,0,0,1]),M([1,(1+i)^2,0,1]),M([1,0,(1+i)^2,1]),

M([1+(1+i)^4,(1+i)^2,(1+i)^2,1]),

M([1+(1+i)^2,-(1+i)^2,(1+i)^2, 1-(1+i)^2]),

M([1+(1+i)^2 +i*(1+i)^3,-(1+i)^4 - i*(1+i)^5,

-i*(1+i)^3 + (1+i)^4,1+(1+i)^2 - i*(1+i)^3 + i*(1+i)^5 - (1+i)^6]),

M([1+(1+i)^2+ i*(1+i)^3,-i*(1+i)^3 + (1+i)^4,(1+i)^2,

1+(1+i)^2 - i*(1+i)^3]),

M([1+(1+i)^2+ i*(1+i)^3,(1+i)^2,-i*(1+i)^3 + (1+i)^4,

1+(1+i)^2 - i*(1+i)^3])]

lifts3 = [M([1,0,0,1]),M([1,(1+i)^3,0,1]),M([1,0,(1+i)^3,1]),

M([1+(1+i)^6,(1+i)^3,(1+i)^3,1]),

M([1+(1+i)^3,-(1+i)^3,(1+i)^3,1-(1+i)^3]),

M([1+(1+i)^3 + (1+i)^6,i*(1+i)^5 - (1+i)^6 - (1+i)^9,(1+i)^6,

1-(1+i)^3 - (1+i)^9]),

M([1+(1+i)^3 + (1+i)^6,i*(1+i)^5 - (1+i)^6 - (1+i)^9,(1+i)^6,
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1-(1+i)^3 - (1+i)^9])*M([1,0,(1+i)^3,1]),

M([1+(1+i)^3 + (1+i)^6,i*(1+i)^5 - (1+i)^6 - (1+i)^9,(1+i)^6,

1-(1+i)^3 - (1+i)^9])*M([1,(1+i)^3,0,1])]

def S_decomposition(g):

r = congruencequotient0m.index(m(g))

rep0 = lifts0[r]

g2 = rep0.inverse()*g

s = congruencequotient1mm.index(mm(g2))

rep1 = lifts1[s]

g3 = rep1.adjoint()*g2

j = congruencequotient2mmm.index(mmm(g3))

rep2 = lifts2[j]

g4 = rep2.adjoint()*g3

n = congruencequotient3mmmm.index(mmmm(g4))

rep3 = lifts3[n]

gamma = rep3.adjoint()*g4

rep = rep0*rep1*rep2*rep3

return([rep,gamma])

The following code is used to calculate the cocycle Σ. This is done in a number

of steps: “Sigma1” is a cocycle which is not defined modulo 4, and is not normalised,

in the sense that when k, k′ ∈ SL2(Oπ, 4), Sigma1(k, k′) is not necessarily 1.

def X(g):

if g[1,0] == 0:

return(g[1,1])

else:

return(g[1,0])

def Sigma1(g,h):

Xgh = X(g*h)

Xg = X(g)
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Xh = X(h)

return wild_hilbert_symbol(Xgh*Xg,Xgh*Xh)

The function “kappa pi” is the splitting SL2(Oπ, 4) → µ2, and “sigma2” is the

cocycle βπ: that is, it takes the value 1 on SL2(Oπ, 4) × SL2(Oπ, 4) but it is not

defined on SL2(O/4).

def kappa_pi(g):

c = g[1,0]

d= g[1,1]

if c*d ==0:

return 1

elif c.valuation(pi)%2:

return wild_hilbert_symbol(c,d)

else:

return 1

def Sigma2(g,h, gh):

Xgh = X(gh)

Xg = X(g)

Xh = X(h)

return wild_hilbert_symbol(Xgh*Xg, Xgh*Xh) *

kappa_pi(g)*kappa_pi(h)*kappa_pi(gh)

Below, the function “S(g)” is the section S : SL2(Oπ) → SL2(Oπ) defining Σ,

and “Sigma3” is the cocycle Σ itself.

def S(g):

sdecomp = S_decomposition(g)

rep = sdecomp[0]

gamma = sdecomp[1]

Xg = X(g)

Xgamma = X(gamma)

Xrep = X(rep)
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return wild_hilbert_symbol(Xg*Xgamma, Xg*Xrep)

*kappa_pi(gamma)*kappa_pi(rep)*kappa_pi(g)

def Skappa(g):

sdecomp = S_decomposition(g)

rep = sdecomp[0]

gamma = sdecomp[1]

Xg = X(g)

Xgamma = X(gamma)

Xrep = X(rep)

return wild_hilbert_symbol(Xg*Xgamma, Xg*Xrep)

*kappa_pi(gamma)*kappa_pi(rep)

def Sigma3(g,h,gh):

Xgh = X(gh)

Xg = X(g)

Xh = X(h)

return wild_hilbert_symbol(Xgh*Xg, Xgh*Xh)

*Skappa(g)*Skappa(h)*Skappa(gh)

Next, we define the group H. Note that it is necessary to lift all the elements of

H to SL2(Z) in order to use the cocycle Σ. We call this set of lifts “Hlift”.

H1 = [mmmm([1,0,0,1]), mmmm([1,1,0,1]),mmmm([1,-1,1,0]),

mmmm([0,-1,1,0]), mmmm([1,0,1,1]), mmmm([0,-1,1,1])]

H2 = [mmmm([1,0,0,1]), mmmm([-1,0,0,-1])]

H3 = [mmmm([1,0,0,1]), mmmm([1,2,0,1])]

H4 = [mmmm([1,0,0,1]), mmmm([1,0,2,1])]

H = [a*b*c*d for a in H1 for b in H2 for c in H3 for d in H4]

H1lift = [M([1,0,0,1]), M([1,1,0,1]),M([1,-1,1,0]),

M([0,-1,1,0]), M([1,0,1,1]), M([0,-1,1,1])]
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H2lift = [M([1,0,0,1]), M([-1,0,0,-1])]

H3lift = [M([1,0,0,1]), M([1,2,0,1])]

H4lift = [M([1,0,0,1]), M([1,0,2,1])]

Hlift = [a*b*c*d for a in H1lift for b in H2lift

for c in H3lift for d in H4lift]

We define the representatives for the double cosets H\G/H:

x = mmmm([1,1+i,0,1])

y = mmmm([1,(1+i)^3,0,1])

u = mmmm([1,(1+i),(1+i)^3,1])

t = mmmm([2+i,0,0,2-i])

z = mmmm([1+2*i,0,0,1+2*i])

xt = x*t

tx = t*x

txt = t*x*t

yt = y*t

yz = y*z

ytz = y*t*z

ut = u*t

tz = t*z

xlift = M([1,1+i,0,1])

ylift = M([1,(1+i)^3,0,1])

ulift = M([-3,1+i,2*i-2,1])

tlift = M([6+i,4,-4+4*i,-2+3*i])

zlift = M([1+2*i,4,-4,-3+6*i])

xtlift = xlift*tlift

txlift = tlift*xlift

txtlift = tlift*xlift*tlift

ytlift = ylift*tlift
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yzlift = ylift*zlift

ytzlift = ylift*tlift*zlift

utlift = ulift*tlift

tzlift = tlift*zlift

Hdoublecosets = [mmmm([1,0,0,1]),z,t,tz,x,xt,tx,txt,y,yz,yt,ytz,u,ut]

Hdoublecosets_inverses = [g.adjoint() for g in Hdoublecosets]

Hdoublecosetlifts = [M([1,0,0,1]),zlift,tlift,tzlift,xlift,

xtlift,txlift,txtlift,ylift,yzlift,ytlift,ytzlift,ulift,utlift]

Finally, we test statement (3.22) with the following programme:

for h in Hlift:

hinverse = h.adjoint()

for g in Hdoublecosets:

glift = Hdoublecosetlifts[Hdoublecosets.index(g)]

gliftinverse = glift.adjoint()

temp = glift*h*gliftinverse

if temp in Hlift:

print Sigma3(temp, glift, temp*glift)

*Sigma3(temp*glift,hinverse,temp*glift*hinverse)

Since this returned the value 1 in all cases, Lemma 3.3.5 is proved.

We have shown that the dimension of H, as a C-vector space, is 14. To find its

structure as an algebra, we must multiply elements. Observe that

Ĥ{g, 1}Ĥ =
⋃
h∈H

Ĥ{g, 1}{h, 1}

=
⋃

h∈H/(Hg∩H)

Ĥ{gh,Σ(g, h)}

The following programme computes Σ(g, h) for each g defined by the basis {Ĥ{g, 1}Ĥ}

of H, and for each h ∈ H/(Hg ∩H). For each g, ‘hforg’ is a list of h such that Hgh

is a single coset inside HgH.
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hfor1 = [mmmm([1,0,0,1])]

hforz = hfor1

hfort = hfor1

hfortz = hfor1

hforx = [mmmm([1,0,0,1]),mmmm([1,1,1,2]),mmmm([1,0,1,1]),

mmmm([1,0,2,1]),mmmm([0,-1,1,0]),mmmm([1,0,-1,1])]

hforxt = hforx

hfortx = hforx

hfortxt = hforx

hfory = [mmmm([1,0,0,1]),mmmm([1,0,1,1]),mmmm([1,-1,1,0])]

hforyz = hfory

hforyt = hfory

hforytz = hfory

hforu = [mmmm([1,0,0,1]),mmmm([1,1,0,1]),mmmm([1,-1,1,0]),

mmmm([0,-1,1,0]),mmmm([1,0,1,1]),mmmm([0,-1,1,1]),mmmm([1,0,2,1]),

mmmm([-1,-1,2,1]),mmmm([0,-1,1,2]),mmmm([1,1,1,2]),

mmmm([0,-1,1,-1]),mmmm([-1,0,1,-1])]

hfortu = hforu

h_for = [hfor1,hfort,hforz,hfortz,hforx,hforxt,hfortx,hfortxt,

hfory,hforyz, hforyt,hforytz,hforu,hfortu]

We must find lifts to characteristic zero.

hfor1lift = [M([1,0,0,1])]

hforzlift = hfor1lift

hfortlift = hfor1lift

hfortzlift = hfor1lift

hforxlift = [M([1,0,0,1]),M([1,1,1,2]),M([1,0,1,1]),M([1,0,2,1]),

M([0,-1,1,0]),M([1,0,-1,1])]

hforxtlift = hforxlift

hfortxlift = hforxlift

hfortxtlift = hforxlift
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hforylift = [M([1,0,0,1]),M([1,0,1,1]),M([1,-1,1,0])]

hforyzlift = hforylift

hforytlift = hforylift

hforytzlift = hforylift

hforulift = [M([1,0,0,1]),M([1,1,0,1]),M([1,-1,1,0]),M([0,-1,1,0]),

M([1,0,1,1]),M([0,-1,1,1]),M([1,0,2,1]),M([-1,-1,2,1]),

M([0,-1,1,2]),M([1,1,1,2]),M([0,-1,1,-1]),M([-1,0,1,-1])]

hfortulift = hforulift

h_for_lifts = [hfor1lift,hfortlift,hforzlift,hfortzlift,hforxlift,

hforxtlift,hfortxlift,hfortxtlift,hforylift,hforyzlift,hforytlift,

hforytzlift,hforulift,hfortulift]

‘HgH’ is a list of the single cosetsHgh inside the double cosetHgH, and ‘HgHmet’

expresses each double coset Ĥ{g, 1}Ĥ as a list of single cosets Ĥ{gh,Σ(g, h)}.

HgH = [[Hdoublecosets[index]*h for h in h_for[index]]

for index in range(14)]

HgHmet = [[[Hdoublecosetlifts[index]*hlift,

Sigma3(Hdoublecosetlifts[index],hlift,Hdoublecosetlifts[index]*hlift)]

for hlift in h_for_lifts[index]] for index in range(14)]

‘Hecke multiply 2” multiplies all the double cosets in H.

Hecke_algebra = ZZ^14

var(’HZ,HT,HTZ,HXH,HXTH,HTXH,HTXTH,HYH,HYZH,HYTH,HYTZH,HUH,HUTH’)

evaluation = matrix(14,

[1,HZ,HT,HTZ,HXH,HXTH,HTXH,HTXTH,HYH,HYZH,HYTH,HYTZH,HUH,HUTH])

def Hecke_multiply2(r,s):

sum_of_answers = Hecke_algebra(0)

Hg1H = HgH[r]

Hg2H = HgH[s]
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Hg1Hmet = HgHmet[r]

Hg2Hmet = HgHmet[s]

for a in Hg1H:

for b in Hg2H:

answer = a*b

for rep_inverse in Hdoublecosets_inverses:

test = answer*rep_inverse

if test in H:

alift = Hg1Hmet[Hg1H.index(a)]

blift = Hg2Hmet[Hg2H.index(b)]

ablift = alift[0]*blift[0]

ind = Hdoublecosets_inverses.index(rep_inverse)

replift = Hdoublecosetlifts[ind]

hlift = replift*ablift.inverse()

twist1 = Sigma3(hlift,ablift,replift)

twist2 = Sigma3(alift[0],blift[0],ablift)

twist = twist1 * twist2 * alift[1] * blift[1]

sum_of_answers[ind] = sum_of_answers[ind] +twist

return((sum_of_answers*evaluation)[0])

for r in range(14):

for s in range(14):

ans = Hecke_multiply2(r,s)

print(evaluation[r],evaluation[s],ans)

This yields the following multiplication table for the genuine Hecke algebra H:

((1), (1), 1)

((1), (HZ), HZ)

((1), (HT), HT)

((1), (HTZ), HTZ)

((1), (HXH), HXH)

((1), (HXTH), HXTH)
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((1), (HTXH), HTXH)

((1), (HTXTH), HTXTH)

((1), (HYH), HYH)

((1), (HYZH), HYZH)

((1), (HYTH), HYTH)

((1), (HYTZH), HYTZH)

((1), (HUH), HUH)

((1), (HUTH), HUTH)

((HZ), (1), HZ)

((HZ), (HZ), 1)

((HZ), (HT), -HTZ)

((HZ), (HTZ), -HT)

((HZ), (HXH), -HXH)

((HZ), (HXTH), -HXTH)

((HZ), (HTXH), -HTXH)

((HZ), (HTXTH), -HTXTH)

((HZ), (HYH), HYZH)

((HZ), (HYZH), HYH)

((HZ), (HYTH), -HYTZH)

((HZ), (HYTZH), -HYTH)

((HZ), (HUH), -HUH)

((HZ), (HUTH), -HUTH)

((HT), (1), HT)

((HT), (HZ), -HTZ)

((HT), (HT), 1)

((HT), (HTZ), -HZ)

((HT), (HXH), HTXH)

((HT), (HXTH), HTXTH)

((HT), (HTXH), HXH)

((HT), (HTXTH), HXTH)

((HT), (HYH), HYTH)

((HT), (HYZH), -HYTZH)
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((HT), (HYTH), HYH)

((HT), (HYTZH), -HYZH)

((HT), (HUH), -HUTH)

((HT), (HUTH), -HUH)

((HTZ), (1), HTZ)

((HTZ), (HZ), -HT)

((HTZ), (HT), -HZ)

((HTZ), (HTZ), 1)

((HTZ), (HXH), HTXH)

((HTZ), (HXTH), HTXTH)

((HTZ), (HTXH), HXH)

((HTZ), (HTXTH), HXTH)

((HTZ), (HYH), HYTZH)

((HTZ), (HYZH), -HYTH)

((HTZ), (HYTH), -HYZH)

((HTZ), (HYTZH), HYH)

((HTZ), (HUH), -HUTH)

((HTZ), (HUTH), -HUH)

((HXH), (1), HXH)

((HXH), (HZ), -HXH)

((HXH), (HT), HXTH)

((HXH), (HTZ), HXTH)

((HXH), (HXH), 2*HUTH + 2*HYH - 2*HYZH)

((HXH), (HXTH), 2*HUH + 2*HYTH + 2*HYTZH)

((HXH), (HTXH), 6*HT + 6*HTZ + 4*HXH)

((HXH), (HTXTH), 4*HXTH - 6*HZ + 6)

((HXH), (HYH), HTXTH + HUH)

((HXH), (HYZH), -HTXTH - HUH)

((HXH), (HYTH), HTXH + HUTH)

((HXH), (HYTZH), HTXH + HUTH)

((HXH), (HUH), -4*HTXH - 2*HUTH - 4*HYH + 4*HYZH)

((HXH), (HUTH), -4*HTXTH - 2*HUH - 4*HYTH - 4*HYTZH)
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((HXTH), (1), HXTH)

((HXTH), (HZ), -HXTH)

((HXTH), (HT), HXH)

((HXTH), (HTZ), HXH)

((HXTH), (HXH), 6*HT + 6*HTZ + 4*HXH)

((HXTH), (HXTH), 4*HXTH - 6*HZ + 6)

((HXTH), (HTXH), 2*HUTH + 2*HYH - 2*HYZH)

((HXTH), (HTXTH), 2*HUH + 2*HYTH + 2*HYTZH)

((HXTH), (HYH), HTXH + HUTH)

((HXTH), (HYZH), -HTXH - HUTH)

((HXTH), (HYTH), HTXTH + HUH)

((HXTH), (HYTZH), HTXTH + HUH)

((HXTH), (HUH), 4*HTXTH + 2*HUH + 4*HYTH + 4*HYTZH)

((HXTH), (HUTH), 4*HTXH + 2*HUTH + 4*HYH - 4*HYZH)

((HTXH), (1), HTXH)

((HTXH), (HZ), -HTXH)

((HTXH), (HT), HTXTH)

((HTXH), (HTZ), HTXTH)

((HTXH), (HXH), -2*HUH + 2*HYTH + 2*HYTZH)

((HTXH), (HXTH), -2*HUTH + 2*HYH - 2*HYZH)

((HTXH), (HTXH), 4*HTXH - 6*HZ + 6)

((HTXH), (HTXTH), 6*HT + 4*HTXTH + 6*HTZ)

((HTXH), (HYH), -HUTH + HXTH)

((HTXH), (HYZH), HUTH - HXTH)

((HTXH), (HYTH), -HUH + HXH)

((HTXH), (HYTZH), -HUH + HXH)

((HTXH), (HUH), 2*HUH - 4*HXH - 4*HYTH - 4*HYTZH)

((HTXH), (HUTH), 2*HUTH - 4*HXTH - 4*HYH + 4*HYZH)

((HTXTH), (1), HTXTH)

((HTXTH), (HZ), -HTXTH)

((HTXTH), (HT), HTXH)

((HTXTH), (HTZ), HTXH)
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((HTXTH), (HXH), 4*HTXH - 6*HZ + 6)

((HTXTH), (HXTH), 6*HT + 4*HTXTH + 6*HTZ)

((HTXTH), (HTXH), -2*HUH + 2*HYTH + 2*HYTZH)

((HTXTH), (HTXTH), -2*HUTH + 2*HYH - 2*HYZH)

((HTXTH), (HYH), -HUH + HXH)

((HTXTH), (HYZH), HUH - HXH)

((HTXTH), (HYTH), -HUTH + HXTH)

((HTXTH), (HYTZH), -HUTH + HXTH)

((HTXTH), (HUH), -2*HUTH + 4*HXTH + 4*HYH - 4*HYZH)

((HTXTH), (HUTH), -2*HUH + 4*HXH + 4*HYTH + 4*HYTZH)

((HYH), (1), HYH)

((HYH), (HZ), HYZH)

((HYH), (HT), HYTH)

((HYH), (HTZ), HYTZH)

((HYH), (HXH), HTXTH - HUH)

((HYH), (HXTH), HTXH - HUTH)

((HYH), (HTXH), HUTH + HXTH)

((HYH), (HTXTH), HUH + HXH)

((HYH), (HYH), 2*HYZH + 3)

((HYH), (HYZH), 2*HYH + 3*HZ)

((HYH), (HYTH), 3*HT - 2*HYTZH)

((HYH), (HYTZH), 3*HTZ - 2*HYTH)

((HYH), (HUH), 2*HTXTH - HUH - 2*HXH)

((HYH), (HUTH), 2*HTXH - HUTH - 2*HXTH)

((HYZH), (1), HYZH)

((HYZH), (HZ), HYH)

((HYZH), (HT), -HYTZH)

((HYZH), (HTZ), -HYTH)

((HYZH), (HXH), -HTXTH + HUH)

((HYZH), (HXTH), -HTXH + HUTH)

((HYZH), (HTXH), -HUTH - HXTH)

((HYZH), (HTXTH), -HUH - HXH)
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((HYZH), (HYH), 2*HYH + 3*HZ)

((HYZH), (HYZH), 2*HYZH + 3)

((HYZH), (HYTH), -3*HTZ + 2*HYTH)

((HYZH), (HYTZH), -3*HT + 2*HYTZH)

((HYZH), (HUH), -2*HTXTH + HUH + 2*HXH)

((HYZH), (HUTH), -2*HTXH + HUTH + 2*HXTH)

((HYTH), (1), HYTH)

((HYTH), (HZ), -HYTZH)

((HYTH), (HT), HYH)

((HYTH), (HTZ), -HYZH)

((HYTH), (HXH), HUTH + HXTH)

((HYTH), (HXTH), HUH + HXH)

((HYTH), (HTXH), HTXTH - HUH)

((HYTH), (HTXTH), HTXH - HUTH)

((HYTH), (HYH), 3*HT - 2*HYTZH)

((HYTH), (HYZH), -3*HTZ + 2*HYTH)

((HYTH), (HYTH), 2*HYZH + 3)

((HYTH), (HYTZH), -2*HYH - 3*HZ)

((HYTH), (HUH), -2*HTXH + HUTH + 2*HXTH)

((HYTH), (HUTH), -2*HTXTH + HUH + 2*HXH)

((HYTZH), (1), HYTZH)

((HYTZH), (HZ), -HYTH)

((HYTZH), (HT), -HYZH)

((HYTZH), (HTZ), HYH)

((HYTZH), (HXH), HUTH + HXTH)

((HYTZH), (HXTH), HUH + HXH)

((HYTZH), (HTXH), HTXTH - HUH)

((HYTZH), (HTXTH), HTXH - HUTH)

((HYTZH), (HYH), 3*HTZ - 2*HYTH)

((HYTZH), (HYZH), -3*HT + 2*HYTZH)

((HYTZH), (HYTH), -2*HYH - 3*HZ)

((HYTZH), (HYTZH), 2*HYZH + 3)



Chapter 3. A ramified genuine Hecke algebra 151

((HYTZH), (HUH), -2*HTXH + HUTH + 2*HXTH)

((HYTZH), (HUTH), -2*HTXTH + HUH + 2*HXH)

((HUH), (1), HUH)

((HUH), (HZ), -HUH)

((HUH), (HT), HUTH)

((HUH), (HTZ), HUTH)

((HUH), (HXH), 2*HUTH + 4*HXTH + 4*HYH - 4*HYZH)

((HUH), (HXTH), 2*HUH + 4*HXH + 4*HYTH + 4*HYTZH)

((HUH), (HTXH), -4*HTXTH + 2*HUH - 4*HYTH - 4*HYTZH)

((HUH), (HTXTH), -4*HTXH + 2*HUTH - 4*HYH + 4*HYZH)

((HUH), (HYH), -2*HTXTH - HUH + 2*HXH)

((HUH), (HYZH), 2*HTXTH + HUH - 2*HXH)

((HUH), (HYTH), -2*HTXH - HUTH + 2*HXTH)

((HUH), (HYTZH), -2*HTXH - HUTH + 2*HXTH)

((HUH), (HUH), 4*HTXH + 4*HXTH - 4*HYH + 4*HYZH - 12*HZ + 12)

((HUH), (HUTH), 12*HT + 4*HTXTH + 12*HTZ + 4*HXH - 4*HYTH - 4*HYTZH)

((HUTH), (1), HUTH)

((HUTH), (HZ), -HUTH)

((HUTH), (HT), HUH)

((HUTH), (HTZ), HUH)

((HUTH), (HXH), -4*HTXTH + 2*HUH - 4*HYTH - 4*HYTZH)

((HUTH), (HXTH), -4*HTXH + 2*HUTH - 4*HYH + 4*HYZH)

((HUTH), (HTXH), 2*HUTH + 4*HXTH + 4*HYH - 4*HYZH)

((HUTH), (HTXTH), 2*HUH + 4*HXH + 4*HYTH + 4*HYTZH)

((HUTH), (HYH), -2*HTXH - HUTH + 2*HXTH)

((HUTH), (HYZH), 2*HTXH + HUTH - 2*HXTH)

((HUTH), (HYTH), -2*HTXTH - HUH + 2*HXH)

((HUTH), (HYTZH), -2*HTXTH - HUH + 2*HXH)

((HUTH), (HUH), -12*HT - 4*HTXTH - 12*HTZ - 4*HXH + 4*HYTH + 4*HYTZH)

((HUTH), (HUTH), -4*HTXH - 4*HXTH + 4*HYH - 4*HYZH + 12*HZ - 12)

Write ḡ for {g, 1} ∈ G.
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Proposition 3.3.6. Ĥz̄Ĥ belongs to the centre of H. We have an isomorphism of

rings

H ∼= Hz=1 ⊕Hz=−1

where Hz=1 is the summand of H on which Ĥz̄Ĥ acts as 1, and Hz=−1 is the sum-

mand on which Ĥz̄Ĥ acts as −1.

This is clear since z̄ is in the centre of G and (Ĥz̄Ĥ)2 = 1 in H.

Theorem 3.3.7. Hz=1 is commutative and 4-dimensional as a C-vector space, with

basis

{1̂, ŷ, t̂, ŷt}.

It has 4 irreducible 1-dimensional representations, given by

t̂ 7−→ 1 t̂ 7−→ 1 t̂ 7−→ −1 t̂ 7−→ −1

ŷ 7−→ 3 ŷ 7−→ −1 ŷ 7−→ 3 ŷ 7−→ −1

ŷt 7−→ 3 ŷt 7−→ −1 ŷt 7−→ −3 ŷt 7−→ 1

Note, from the multiplication table above, that setting Ĥz̄Ĥ = 1 forces Ĥx̄Ĥ =

ĤūĤ = 0.

Theorem 3.3.8. The algebra Hz=−1 is non-commutative and 10-dimensional as a

vector space, with basis

{1̂, t̂, x̂, x̂t, t̂x, ˆtxt, ŷ, ŷt, û, ût}.

Its centre, Z(Hz=−1), is 4-dimensional, generated by {1̂, ẑ1 = t̂ + ŷt, ẑ2 = x̂ + ˆtxt +

4ŷt, ẑ3 = t̂x+ x̂t− 2ŷ}. There are 4 central characters:

χ1(ẑ1) = 2 χ2(ẑ1) = −2 χ3(ẑ1) = 2 χ4(ẑ1) = −2

χ1(ẑ2) = 0 χ2(ẑ2) = 0 χ3(ẑ2) = 12 χ4(ẑ2) = −12

χ1(ẑ3) = −6 χ2(ẑ3) = −6 χ3(ẑ3) = 6 χ4(ẑ3) = 6

The irreducible representations of Hz=−1 are:

1.

Hz=−1/(ẑ1 = χ1(ẑ1), ẑ2 = χ1(ẑ2), ẑ3 = χ1(ẑ3)) −→ C
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2.

Hz=−1/(ẑ1 = χ2(ẑ1), ẑ2 = χ2(ẑ2), ẑ3 = χ2(ẑ3)) −→ C

3.

Hz=−1/(ẑ1 = χ3(ẑ1), ẑ2 = χ3(ẑ2), ẑ3 = χ3(ẑ3)) −→ M2(C)

û 7−→

0 48

1 0


t̂ 7−→

1 0

0 −1



4.

Hz=−1/(ẑ1 = χ4(ẑ1), ẑ2 = χ4(ẑ2), ẑ3 = χ4(ẑ3)) −→ M2(C)

û 7−→

0 48

1 0


t̂ 7−→

1 0

0 −1



Each of these representations is an isomorphism, hence

Hz=−1
∼= C⊕ C⊕M2(C)⊕M2(C).

Proof. Setting Ĥz̄Ĥ = −1, we have (from the table above)

ŷt ∗ ẑ = − ˆytz

⇒ ŷt = ˆytz;

ŷz ∗ ẑ = ŷ

⇒ ŷz = −ŷ;
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t̂z ∗ ẑ = −t̂

⇒ t̂z = t̂.

Thus, Hz=−1 is 10-dimensional, with basis

{1̂, t̂, x̂, x̂t, t̂x, ˆtxt, ŷ, ŷt, û, ût}.

A straightforward (but long) check shows that Z(Hz=−1), is 4-dimensional, gen-

erated by {1̂, ẑ1, ẑ2, ẑ3}. The following is the multiplication table for Z(Hz=−1):

1 z1 z2 z3

1 1 z1 z2 z3

z1 z1 4 2z3 + 12 2z2 − 6z1

z2 z2 2z3 + 12 12z3 + 72 6z2

z3 z3 2z2 − 6z1 6z2 36

Indeed,

ẑ2
1 = (t̂+ ŷt)(t̂+ ŷt)

= 1 + 2ŷ − 2ŷ + 3

= 4.

ẑ2
2 = (x̂+ ˆtxt+ 4ŷt)(x̂+ ˆtxt+ 4ŷt)

= 2ût+ 4ŷ + 4x̂t+ 12 + 4(t̂x+ ût) + 4t̂x+ 12− 2ût+ 4ŷ + 4(−ût+ x̂t)

+ 4(ût+ x̂t) + 4(t̂x− ût) + 16(−2ŷ + 3)

= −24ŷ + 12x̂t+ 12t̂x+ 72

= 12(t̂x+ x̂t− 2ŷ) + 72

= 12ẑ3 + 72.

ẑ2
3 = (t̂x+ x̂t− 2ŷ)(t̂x+ x̂t− 2ŷ)

= 4t̂x+ 12− 2ût+ 4ŷ − 2(−ût+ x̂t) + 2ût+ 4ŷ + 4x̂t+ 12− 2(t̂x+ ût)− 2(ût+ x̂t)

− 2(t̂x− ût) + 4(−2ŷ + 3)

= 36.
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ẑ1ẑ2 = (x̂+ ˆtxt+ 4ŷt)(t̂+ ŷt)

= x̂t+ t̂x+ 4ŷ + t̂x+ ût− ût+ x̂t+ 4(−2ŷ + 3)

= 2x̂t+ 2t̂x− 4ŷ + 12

= 12 + 2ẑ3.

ẑ2ẑ3 = (x̂+ ˆtxt+ 4ŷt)(t̂x+ x̂t− 2ŷ)

= 12t̂+ 4x̂+ 2û+ 4ŷt− 2 ˆtxt− 2û− 2û+ 2ŷt+ 2ŷt+ 12t̂+ 4 ˆtxt+ 2û+ 4 ˆtxt

− 4û+ 4û+ 4x̂− 24t̂+ 16ŷt

= 6x̂+ 24ŷt+ 6 ˆtxt

= 6ẑ2.

ẑ1ẑ3 = (t̂+ ŷt)(t̂x+ x̂t− 2ŷ)

= 2x̂+ 2 ˆtxt+ 2ŷt− 6t̂

= 2(x̂+ ˆtxt+ 4ŷt)− 6ŷt− 6t̂

= 2ẑ2 − 6ẑ1.

Clearly, if χ : Z(Hz=−1)→ C is a ring homomorphism, then

χ(ẑ1) = ±2 and χ(ẑ3) = ±6.

If χ(ẑ1) = 2 and χ(ẑ3) = 6, the equation

χ(ẑ1ẑ2) = 2χ(ẑ3) + 12 (3.23)

implies χ(ẑ2) = 12. This gives χ3. If χ(ẑ1) = 2 and χ(ẑ3) = −6, then by (3.23),

χ(ẑ2) = 0. This gives χ1. If χ(ẑ1) = −2, then again by (3.23), χ(ẑ3) = 6 gives

χ(ẑ2) = −12, and χ(ẑ3) = −6 gives χ(ẑ2) = 0. This gives the values of the two

remaining characters.

For ease of notation, define, for 1 ≤ i ≤ 4,

Hχi
z=−1 = Hz=−1/〈ζ̂ − χi(ζ̂) for all ζ̂ ∈ Z(Hz=−1)〉.

Consider Hχ1

z=−1. The relation ẑ3 = χ1(ẑ3): that is, t̂x + x̂t− 2ŷ = −6, gives, on

multiplication by t̂ on the left,

x̂+ ˆtxt− 2ŷt = −6t̂. (3.24)
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The relation ẑ1 = χ1(ẑ1) implies that ŷt = 2− t̂, and ẑ2 = χ1(ẑ2) implies

x̂+ ˆtxt+ 8− 4t̂ = 0⇔

−8− ˆtxt+ 4t̂ = x̂. (3.25)

Substituting (3.25) into (3.24) gives

ˆtxt− 8− ˆtxt+ 4t̂− 2ŷt = −6t̂⇔

−8 + 10t̂ = 2ŷt⇔

−4 + 5t̂ = ŷt. (3.26)

On the other hand, since ŷt = 2− t̂, (3.26) gives

−4 + 5t̂ = 2− t̂⇔

−6 + 6t̂ = 0⇔

6t̂ = 6⇔

t̂ = 1.

If φ : Hχ1

z=−1 → EndC(Cm) is a ring homomorphism (for some integer m ≥ 1),

then

φ(x̂t) = φ(t̂x) = φ( ˆtxt) = φ(x̂);

φ(ŷt) = φ(ŷ)

and,

φ(ût) = φ(û).

The relation ŷt = 2 − t̂ gives ŷ = 1. Using the relation t̂x + x̂t − 2ŷ = −6, we get

that

x̂+ x̂− 2 = −6⇔

2x̂ = −4⇔

x̂ = −2.



Chapter 3. A ramified genuine Hecke algebra 157

Observe that in Hz=−1,

x̂ ∗ ŷ = ˆtxt+ û.

Multiplying by t̂ on the left of the relation ŷt = 2− t̂ shows that ŷ = 2t̂− 1. Using

this, and (3.25), we have

(−8− ˆtxt+ 4t̂) ∗ (2t̂− 1) = ˆtxt+ û⇔

−20t̂+ 16 + ˆtxt− 2t̂x = ˆtxt+ û⇔

û = 16− 20t̂− 2t̂x⇔

û = 16− 20 + 4 using t̂ = 1, t̂x = x̂ = −2⇔

û = 0.

We have shown that there is a homomorphism

Hχ1

z=−1 −→ C

t̂ 7−→ 1,

x̂ 7−→ −2,

t̂x 7−→ −2,

x̂t 7−→ −2,

ŷ 7−→ 1,

ŷt 7−→ 1,

ût 7−→ 0,

û 7−→ 0.

The 1-dimensional representation of Hχ2

z=−1 is calculated in much the same way.

Consider Hχ3

z=−1. We shall show that {1̂, t̂, û, ût} is a basis for Hχ3

z=−1. By the

relation ẑ1 = χ3(ẑ1), we have ŷt = 2− t̂ and therefore ŷ = 2t̂− 1. In Hz=−1,

ˆtxt ∗ ˆtxt = −2ût+ 4ŷ

= −2ût+ 4(2t̂− 1)

= −2ût+ 8t̂− 4. (3.27)
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On the other hand, by associativity, ˆtxt ∗ ˆtxt = t̂x ∗ t̂2 ∗ x̂t = t̂x ∗ x̂t = t̂ ∗ x̂2 ∗ t̂, and

t̂ ∗ x̂2 ∗ t̂ = t̂(4x̂− 12)t̂

= 4 ˆtxt− 12. (3.28)

Putting (3.27) and (3.28) together gives

4 ˆtxt− 12 = −2ût+ 8t̂− 4⇔

4 ˆtxt = −2ût+ 8t̂+ 8⇔

ˆtxt = −1

2
ût+ 2t̂+ 2. (3.29)

By the relation ẑ2 = χ3(ẑ2), we have

x̂ = 12− 4ŷt− ˆtxt

= 12− 4(2− t̂)− ˆtxt

= 4 + 4t̂− ˆtxt

= 2 + 2t̂+
1

2
ût using (3.29) (3.30)

Multiplying by t̂ on the left gives

t̂x = 2 + 2t̂− 1

2
û,

and on the right gives

x̂t = 2 + 2t̂+
1

2
û.

That is, {1̂, t̂, û, ût} is a basis for Hχ3

z=−1.

In Hχ3

z=−1,

û2 = 4t̂x+ 4x̂t− 8ŷ + 24

= 4ẑ3 + 24

= 48.

Also, (ût)2 = −û2 = −48, and ût = −t̂u. Thus Hχ3

z=−1 has a basis {1̂, û, t̂, ût}

subject to the relations t̂2 = 1, û2 = 48, (ût)2 = −48, t̂u = −ût. Hence there is a
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homomorphism

Hχ3

z=−1 −→M2(C)

û 7−→

0 48

1 0


t̂ 7−→

1 0

0 −1


which is also an isomorphism.

Finally, consider Hχ4

z=−1. Calculations as above show that {1̂, t̂, û, ût} is a basis

for Hχ4

z=−1; the relations are û2 = 48, (ût)2 = −48 and ût = −t̂u. Thus there is a

representation

Hχ4

z=−1 −→M2(C)

û 7−→

0 48

1 0


t̂ 7−→

1 0

0 −1


as above, which is an isomorphism.

2

3.4 Representations of SL2(Fπ) containing

non-zero K̂π(4)-fixed vectors

Let $π(χ1, χ2) be the component at π of a level one cuspidal automorphic repre-

sentation of SL2(A). Thus, $π(χ1, χ2) is an unramified principal series representa-

tion, which is an irreducible admissible representation of SL2(Fπ), and whose space

of Kπ := SL2(Oπ)-fixed vectors is not zero. In fact,

dim($π(χ1, χ2)Kπ) = 1,

and

χ1, χ2 : F×π /O
×
π −→ C× are unramified.
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Define χ : F×π /O
×
π → C× by χ = χ1χ2; χ is the central character of $π(χ1, χ2).

Since both χ1 and χ2 are even, $π(χ1, χ2) is in the image of S̃π, the modified local

Flicker correspondence (Theorem 1.4.13). We shall denote its pre-image by $π(χ̄).

The representation $π(χ̄) is of the principal series; its (genuine) central character χ̄

is defined by:

χ̄


a2 0

0 a−2

 , ξ


 = ξ χ

a 0

0 a−1

 for a ∈ F×π , ξ ∈ µ2,

and $π(χ̄) is level one, since

dim($π(χ̄)K̂π(4)) > 0.

In this section, we shall calculate the dimension of $π(χ̄)K̂π(4) and we shall de-

termine this space as a representation of the genuine Hecke algebra H.

3.4.1 The extension of the central character

Recall the subgroups Tv, Nv, Bv ⊂ GL2(Fv) we defined in Section 1.1. We want

to think of these instead as subgroups of SL2(Fπ) or SL2(Ov). To this end, define,

for R = Fπ or Oπ,

T (R) =


a 0

0 a−1

 ∣∣∣∣∣ a ∈ R×
 ;

N(R) =


1 b

0 1

 ∣∣∣∣∣ b ∈ R
 ;

B(R) =


a b

0 a−1

 ∣∣∣∣∣ a ∈ R×, b ∈ R
 = N(R)T (R) = T (R)N(R),

and let T (R), N(R), B(R) be their respective pre-images in SL2(R).

In the notation of Subsection 1.4.1, the representation $π(χ̄) of SL2(Fπ) is of

the form Ind
SL2(Fπ)

B(Fπ)
(χ̄0), for some genuine character χ̄0 of B(Fπ) which is trivial

on N̂(Fπ) and which agrees with χ̄ on T (Fπ)2. Note that, in the case of GL2, the

principal series representations are induced from a representation of B(Fπ) which

is itself induced from T
0
(Fπ)N̂(Fπ) where T

0
(Fπ) is a maximal abelian subgroup of
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T (Fπ). In the case of SL2, the group T (Fπ) is itself abelian, so we can simply induce

from B(Fπ) = T (Fπ)N̂(Fπ).

To find such a character χ̄0, we must extend χ̄ to the whole of T (Fπ).

Since the Hecke algebra acting on Ind
SL2(Fπ)

B(Fπ)
(χ̄0) is H = H(Kπ, K̂π(4)), it will

be sufficient to calculate Ind
SL2(Fπ)

B(Fπ)
(χ̄0) as a Kπ-module. Observe that

SL2(Fπ)/B(Fπ) = SL2(Fπ)/B(Fπ) = Kπ/B(Oπ) = Kπ/B(Oπ).

It follows that there is a Kπ-isomorphism

Ind
SL2(Fπ)

B(Fπ)
(χ̄0) ∼= Ind Kπ

B(Oπ)
(χ̄0).

Our task now is to find a character χ̄0 of T (Oπ) which is trivial on T̂ (Oπ)2 (since

χ is unramified) and genuine. Since this character will have the property that

χ̄0({g,−1}) = −1 for all g ∈ Kπ,

it will suffice to determine χ̄0 on the subgroup T̂ (Oπ) ∼= T (Oπ).

We shall use the isomorphism T (Oπ) ∼= O×π to abuse notation: we’ll write χ̄0(a)

for χ̄0

((
a 0
0 a−1

))
. Consider the extension

1 −→ µ2 −→ T (Oπ) −→ T (Oπ) −→ 1;

it corresponds to the restriction of the cocycle ωπ to T (Oπ) which we gave in (1.6).

The character χ̄0 shall be a section T (Oπ)→ µ2 corresponding to the 2-cocycle ωπ.

Lemma 3.4.1. Define χ̄0 : T (Oπ)→ C× by

χ̄0({ia3b(1 + 2i)c, ξ}) = ξ (−1)ac for a, b, c ∈ {0, 1} and ξ ∈ µ2.

Then χ̄0 is a genuine character of T (Oπ) which is trivial on T̂ (Oπ)2.

Proof. Note that χ̄0 is well-defined since

T (Oπ)/T (Oπ)2 ∼= O×π /O
×2
π
∼=
(
O/π5

)×
/{±1} =< i > × < 3 > × < 1 + 2i >

= C2 × C2 × C2.

This means that every element of O×π /O
×2
π has a unique representation in the form

ia3b(1 + 2i)c for a, b, c ∈ {0, 1}.
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Clearly, χ̄0 is genuine. To see that χ̄0 is a character, suppose that x = {ia3b(1 +

2i)c, 1} and y = {ia′3b′(1 + 2i)c
′
, 1} are two elements of O×π /O

×2
π ×{1}. Of course, we

shall think of x and y as elements of T̂ (Oπ) = T (Oπ)× {1}. Now,

x ∗ y ={ia3b(1 + 2i)c, 1} ∗ {ia′3b′(1 + 2i)c
′
, 1}

={ia3b(1 + 2i)cia
′
3b
′
(1 + 2i)c

′
, ωπ(ia3b(1 + 2i)c, ia

′
3b
′
(1 + 2i)c

′
)}

={ia+a′3b+b
′
(1 + 2i)c+c

′
, (ia3b(1 + 2i)c, ia

′
3b
′
(1 + 2i)c

′
)π} by Lemma 1.1.5

={ia+a′3b+b
′
(1 + 2i)c+c

′
, (i, 3)ab

′+a′b
π (i, 1 + 2i)ac

′+a′c
π (3, 1 + 2i)bc

′+b′c
π }

={ia+a′3b+b
′
(1 + 2i)c+c

′
, (i, 1 + 2i)ac

′+a′c
π } since (i, 3)π = 1 and (3, 1 + 2i)π = 1

={ia+a′3b+b
′
(1 + 2i)c+c

′
, (−1)ac

′+a′c} since (i, 1 + 2i)π = −1.

Therefore,

χ̄0(x ∗ y) =(−1)(a+a′)(c+c′)(−1)ac
′+a′c

=(−1)ac+a
′c′ .

On the other hand,

χ̄0(x)χ̄0(y) =(−1)ac(−1)a
′c′

=(−1)ac+a
′c′ .

Hence χ̄0 is a character. Finally, χ̄0 is obviously trivial on T̂ (Oπ)2.

2

Remark 3.4.1. The centre of Kπ is

±1 0

0 ±1

 ,±1


 ∼= C2 × C2.
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The central character of Ind Kπ

B(Oπ)
(χ̄0) is given by:

χ̄0


−1 0

0 −1

 , 1


 = 1

χ̄0


−1 0

0 −1

 ,−1


 = −1

χ̄0


1 0

0 1

 ,−1


 = −1

χ̄0


1 0

0 1

 , 1


 = 1.

This can easily be seen by the fact that −1 = i2 ∈ O×2
π . In fact, this is the only

choice of central character whose restriction to O×2
π is trivial.

3.4.2 The action of H
To save chalk, put W = Ind Kπ

B(Oπ)
(χ̄0). By definition (see (1.25)),

W =
{
f : Kπ → C | f(gb) = χ̄0(b)f(g) for all b ∈ B(Oπ), g ∈ Kπ;

f is locally constant} .

Note that in this case, the normalising factor | · |
1
2
π is trivial because b ∈ B(Oπ) (if

b =
(
a 0
0 a−1

)
, then |a|π = 1). We shall find a basis for the space of K̂π(4)-fixed vectors

in W . Again, by definition,

W K̂π(4) =
{
f : Kπ → C | f(kgb) = χ̄0(b)f(g) for all k ∈ K̂π(4), b ∈ B(Oπ), g ∈ Kπ;

f is locally constant.}

Let B(O/4) be B(R) as above, with R = O/4. There are bijections

Kπ(4)\Kπ/B(Oπ) ∼= SL2(Z/4)\SL2(O/4)/B(O/4) ∼= SL2(Z/4)\P1(O/4), (3.31)

and, further, that |SL2(Z/4)\P1(O/4)| = 4; a set of double coset representatives for

Kπ(4)\Kπ/B(Oπ) is given by:
1 0

0 1

 ,

i −1

1 0

 ,

−i −1

1 0

 ,

2i −1

1 0

 . (3.32)
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In fact, since

K̂π(4)\Kπ/B(Oπ) = Kπ(4)\Kπ/B(Oπ),

a set of coset representatives for K̂π(4)\Kπ/B(Oπ) is:{
ĥ = {h, 1} | h ∈ Kπ(4)\Kπ/B(Oπ)

}
Each element of W K̂π(4) is determined by its values on the representatives (3.32).

If ĥ is such a representative, and there is an element which has value 1 on ĥ, and 0

on all other representatives, then we call this element 1ĥ. The elements of the form

1ĥ form a basis for W K̂π(4).

Suppose that k ∈ K̂π(4) and b ∈ B(Oπ).

1ĥ(kĥb) =χ̄0(b)1ĥ(ĥ)

= χ̄0(b),

It follows that if kĥb = k′ĥb′ then we must have χ̄0(b) = χ̄0(b′). This means that for

each ĥ, χ̄0 must be trivial on B(Oπ) ∩ (ĥ−1K̂π(4)ĥ).

We shall write h for ĥ = {h, 1} and we shall think of the representatives (3.32)

as their images under (3.31): that is, as the elements1

0

 ,
i

1

 ,
−i

1

 ,
2i

1


of P1(O/4). Then the basis for W K̂π(4) can be re-written as:{

1[ 1
0 ],1[ i1 ],1[−i1 ],1[ 2i

1 ]

}
Lemma 3.4.2. The representation W K̂π(4) is 2-dimensional as a complex vector

space. A basis is given by {
1[ 1

0 ],1[ 2i
1 ]

}
.

Proof. We shall show that χ̄0 is not trivial on B(Oπ) ∩ (ĥ−1K̂π(4)ĥ) when

ĥ = {( i −1
1 0 ) , 1} and {( −i −1

1 0 ) , 1}. Using (3.31), this is equivalent to showing that χ̄0

is not trivial on B(O/4) ∩ h−1SL2(Z/4)h when h = ( i −1
1 0 ) or ( −i −1

1 0 ).
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Let h1 =

i −1

1 0

. Observe that

h−1
1 SL2(Z/4)h1 =


 0 1

−1 i

a b

c d

i −1

1 0

 ∣∣∣∣∣ a, b, c, d,∈ Z/4, ad− bc ≡ 1 (mod 4)


=


 d+ ic −c

−b− c+ i(d− a) a− ic

 ∣∣∣∣∣ a, b, c, d,∈ Z/4, ad− bc ≡ 1 (mod 4)

 .

Then,

B(O/4) ∩ h−1
1 SL2(Z/4)h1 =


a+ ic −c

0 a− ic

 ∣∣∣∣∣a, c ∈ Z/4


In particular, setting a = 2, c = −1, we find that

χ̄0

2− i 1

0 (2− i)−1

 = −1 since 2− i = i3(1 + 2i).

Let h2 =

−i −1

1 0

. Observe that

h−1
2 SL2(Z/4)h2 =


 0 1

−1 −i

a b

c d

−i −1

1 0

 ∣∣∣∣∣
a, b, c, d,∈ Z/4, ad− bc ≡ 1 (mod 4)}

=


 d− ic −c

−b− c− i(d− a) a+ ic

 ∣∣∣∣∣
a, b, c, d,∈ Z/4, ad− bc ≡ 1 (mod 4)} .

Then,

B(O/4) ∩ h−1
2 SL2(Z/4)h2 =


a− ic −c

0 a+ ic

 ∣∣∣∣∣a, c ∈ Z/4


In particular, setting a = 2, c = 1, we find that

χ̄0

2− i 1

0 (2− i)−1

 = −1 since 2− i = i3(1 + 2i).
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This implies that the functions 1[ i1 ],1[−i1 ] do not exist.

One can prove in the same way that χ̄0 is trivial on B(O/4) ∩ h−1SL2(Z/4)h

when h = ( 1 0
0 1 ) and ( 2i −1

1 0 ). 2

The Hecke algebra H acts on W K̂π(4) in the following way. Let g̃ ∈ Kπ and let T

be the double coset K̂π(4)g̃K̂π(4):

T =K̂π(4)g̃K̂π(4)

= q
m
K̂π(4)g̃m.

We saw in Subsection 1.4.1.4 that Kπ acts on the right of W by left translation;

explicitly:

(fg̃)(x) = f(g̃x) for f ∈ W, g̃ ∈ Kπ.

The action of T is

(fT )(x) =
∑
m

(fg̃m)(x)

=
∑
m

f(g̃mx).

In particular, if x, y belong to {[ 1
0 ] , [ 2i

1 ]}, then

(1xT ) (y) =
∑
m

1x(g̃my)

=
∑

m: K̂π(4)xB(Oπ)=K̂π(4)g̃myB(Oπ)

1x(g̃my)

=
∑

K̂π(4)xb=K̂π(4)g̃my

1x(xb)

=
∑

K̂π(4)xb=K̂π(4)g̃my

χ̄0(b).

In practice, we shall work “mod 4” using the isomorphism H = H(Kπ, K̂π(4)) ∼=

H(SL2(O/4), ŜL2(Z/4)) = H(G, Ĥ). Recall (Proposition 3.3.6) that there is a de-

composition of H:

H ∼= Hz=1 ⊕Hz=−1;

we have an action of either summand, Hz=1 or Hz=−1, according to whether the

double coset Ĥz̄Ĥ acts as 1 or −1 respectively.
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Proposition 3.4.3. The representation W K̂π(4) is a representation of Hz=1.

Proof. We are required to show that Ĥz̄Ĥ acts trivially on W K̂π(4). First recall

that

Ĥz̄Ĥ =Ĥ


1 + 2i 0

0 1 + 2i

 , 1

 Ĥ

=Ĥ


1 + 2i 0

0 1 + 2i

 , 1

 .

Now,

(
1[ 1

0 ]Ĥz̄Ĥ
)

1 0

0 1

 , 1

 =1[ 1
0 ]


1 + 2i 0

0 1 + 2i

 , 1




=χ̄0


1 + 2i 0

0 1 + 2i

 , 1




=1.

(
1[ 2i

1 ]Ĥz̄Ĥ
)

2i −1

1 0

 , 1

 =1[ 2i
1 ]


1 + 2i 0

0 1 + 2i

 , 1



2i −1

1 0

 , 1




=1[ 2i
1 ]


2i −1

1 0

 , 1



1 + 2i 0

0 1 + 2i

 , 1




=χ̄0


1 + 2i 0

0 1 + 2i

 , 1




=1.

Hence Ĥz̄Ĥ acts trivially as claimed. 2

Since Hz=1 is commutative (Theorem 3.3.7), it follows that W K̂π(4) must be re-

ducible: it must be the sum of two irreducible subspaces. Furthermore, since Hz=1

is generated as an algebra by ŷ and t̂, where

ŷ2 =2ŷ + 3

t̂2 =1,

each of these irreducible subspaces must be an eigenspace for the action of ŷ and t̂.
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Theorem 3.4.4. As a representation of Kπ,

W K̂π(4) ∼= W (3)⊕W (−1),

where W (3) (resp. W (−1)) is the 3 (resp. −1)-eigenspace of ŷ.

Proof. We shall calculate the action of t̂.

Ĥt̄Ĥ =Ĥ


2 + i 0

0 2− i

 , 1

 Ĥ

=Ĥ


2 + i 0

0 2− i

 , 1

 .

Now,

(
1[ 1

0 ]Ĥt̄Ĥ
)

1 0

0 1

 , 1

 =1[ 1
0 ]


2 + i 0

0 2− i

 , 1




=χ̄0


2 + i 0

0 2− i

 , 1




=− 1.

That is, (
1[ 1

0 ]Ĥt̄Ĥ
)

= −1[ 1
0 ].
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Further,

(
1[ 2i

1 ]Ĥt̄Ĥ
)

2i −1

1 0

 , 1

 =1[ 2i
1 ]


2 + i 0

0 2− i

 , 1



2i −1

1 0

 , 1




=1[ 2i
1 ]


 2 2− i

2− i 0

 ,

Σ

2 + i 0

0 2− i

 ,

2i −1

1 0




=1[ 2i
1 ]


2i −1

1 0

2− i 0

0 2 + i

 ,

Σ

2 + i 0

0 2− i

 ,

2i −1

1 0


Σ

2i −1

1 0

 ,

2− i 0

0 2 + i




=χ̄0


2− i 0

0 2 + i

 , 1




=− 1.

Hence, (
1[ 2i

1 ]Ĥt̄Ĥ
)

= −1[ 2i
1 ].

We have shown that t̂ acts as −1 on W K̂π(4). We shall now calculate the action

of ŷ. Recall that

ĤȳĤ =Ĥ


1 2 + 2i

0 1

 , 1

 Ĥ

=
3⋃
i=1

Ĥ {yi, 1} where

y1 =

1 2 + 2i

0 1

 , y2 =

−1 + 2i −2 + 2i

1 1

 , y3 =

−1 + 2i −1

1 0

 .
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Then,

(
1[ 1

0 ]ĤȳĤ
)

1 0

0 1

 , 1

 =1[ 1
0 ]


1 2 + 2i

0 1

 , 1



1 0

0 1

 , 1




+ 1[ 1
0 ]


−1 + 2i −2 + 2i

1 1

 , 1



1 0

0 1

 , 1




+ 1[ 1
0 ]


−1 + 2i −1

1 0

 , 1



1 0

0 1

 , 1




We shall consider each summand on the right-hand side in turn.

1[ 1
0 ]


1 2 + 2i

0 1

 , 1



1 0

0 1

 , 1


 =1[ 1

0 ]


1 0

0 1

 , 1



1 2 + 2i

0 1

 , 1




=χ̄0


1 2 + 2i

0 1

 , 1




=1.

On the other hand,

1[ 1
0 ]


−1 + 2i −2 + 2i

1 1

 , 1



1 0

0 1

 , 1




=1[ 1
0 ]


2i −1 + 2i

1 1

 ,Σ

2i −1 + 2i

1 1

 ,

1 −1

0 1




=0,

and, similarly,

1[ 1
0 ]


−1 + 2i −1

1 0

 , 1



1 0

0 1

 , 1




= 1[ 1
0 ]


2i −1

1 0

 ,Σ

2i −1

1 0

 ,

1 −1

0 1

 ,




= 0.

These calculations show that(
1[ 1

0 ]ĤȳĤ
)

= 1[ 1
0 ] + c1[ 2i

1 ]
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for some complex number c.

Next, we evalulate
(
1[ 1

0 ]ĤȳĤ
)

on ( 2i −1
1 0 ). We have

(
1[ 1

0 ]ĤȳĤ
)

2i −1

1 0

 , 1

 =1[ 1
0 ]


1 2 + 2i

0 1

 , 1



2i −1

1 0

 , 1




+ 1[ 1
0 ]


−1 + 2i −2 + 2i

1 1

 , 1



2i −1

1 0

 , 1




+ 1[ 1
0 ]


−1 + 2i −1

1 0

 , 1



2i −1

1 0

 , 1




We shall consider each summand on the right-hand side in turn.

1[ 1
0 ]


1 2 + 2i

0 1

 , 1



2i −1

1 0

 , 1




=1[ 1
0 ]


2 −1

1 0

 ,Σ

1 2 + 2i

0 1

 ,

2i −1

1 0

Σ

1 2 + 2i

0 1

 ,

2i −1

1 0




=1[ 1
0 ]


2 −1

1 0

 , 1




=1.



Chapter 3. A ramified genuine Hecke algebra 172

The second summand:

1[ 1
0 ]


−1 + 2i −2 + 2i

1 1

 , 1



2i −1

1 0

 , 1




=1[ 1
0 ]


 −2 1− 2i

1 + 2i −1

 ,Σ

−1 + 2i −2 + 2i

1 1

 ,

2i −1

1 0




=1[ 1
0 ]


1 −2

0 1

 0 −1− 2i

1 + 2i −1

 ,Σ

1 −2

0 1

 ,

 0 −1− 2i

1 + 2i −1




=1[ 1
0 ]


0 −1

1 0

1 + 2i −1

0 1 + 2i

 ,Σ

0 −1

1 0

 ,

1 + 2i −1

−4 1 + 2i




=1[ 1
0 ]


1 −1− 2i

0 1

1 + 2i 0

0 1 + 2i

 ,Σ

1 −1− 2i

0 1

 ,

1 + 2i 0

0 1 + 2i




=χ̄0


1 + 2i 0

0 1 + 2i

 , 1




=1.

The third summand:

1[ 1
0 ]


−1 + 2i −1

1 0

 , 1



2i −1

1 0

 , 1




=1[ 1
0 ]


−1− 2i 1− 2i

2i −1

 ,Σ

−1 + 2i −1

1 0

 ,

2i −1

1 0




= 0.

Thus, (
1[ 1

0 ]ĤȳĤ
)

= 1[ 1
0 ] + 21[ 2i

1 ].

The next step is to calculate
(
1[ 2i

1 ]ĤȳĤ
)

on ( 1 0
0 1 ). We have

(
1[ 2i

1 ]ĤȳĤ
)

1 0

0 1

 , 1

 =1[ 2i
1 ]


1 2 + 2i

0 1

 , 1



1 0

0 1

 , 1




+ 1[ 2i
1 ]


−1 + 2i −2 + 2i

1 1

 , 1



1 0

0 1

 , 1




+ 1[ 2i
1 ]


−1 + 2i −1

1 0

 , 1



1 0

0 1

 , 1



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We shall consider each summand on the right-hand side in turn. The first summand:

1[ 2i
1 ]


1 2 + 2i

0 1

 , 1



1 0

0 1

 , 1




1[ 2i
1 ]


1 0

0 1

 , 1



1 2 + 2i

0 1

 , 1




0.

The second summand:

1[ 2i
1 ]


−1 + 2i −2 + 2i

1 1

 , 1



1 0

0 1

 , 1




1[ 2i
1 ]


1 −1

0 1

2i −1 + 2i

1 1

 ,Σ

1 −1

0 1

 ,

2i −1 + 2i

1 1




1[ 2i
1 ]


2i −1

1 0

1 1

0 1

 ,Σ

2i −1

1 0

 ,

1 1

0 1




= χ̄0


1 1

0 1

 , 1




= 1.

The third summand:

1[ 2i
1 ]


−1 + 2i −1

1 0

 , 1



1 0

0 1

 , 1




= 1[ 2i
1 ]


1 −1

0 1

2i −1

1 0

 ,Σ

1 −1

0 1

 ,

2i −1

1 0




= 1.

So far,

(
1[ 2i

1 ]ĤȳĤ
)

1 0

0 1

 , 1

 = 21[ 1
0 ] + c1[ 2i

1 ] for some complex number c.
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We must calculate the action of
(
1[ 2i

1 ]ĤȳĤ
)

on ( 2i −1
1 0 ). We have

(
1[ 2i

1 ]ĤȳĤ
)

2i −1

1 0

 , 1

 =1[ 2i
1 ]


1 2 + 2i

0 1

 , 1



2i −1

1 0

 , 1




+ 1[ 2i
1 ]


−1 + 2i −2 + 2i

1 1

 , 1



2i −1

1 0

 , 1




+ 1[ 2i
1 ]


−1 + 2i −1

1 0

 , 1



2i −1

1 0

 , 1




We shall consider each summand on the right-hand side in turn. The first summand:

1[ 2i
1 ]


1 2 + 2i

0 1

 , 1



2i −1

1 0

 , 1




= 1[ 2i
1 ]


2 + 4i −1

1 0

 ,Σ

1 2 + 2i

0 1

 ,

2i −1

1 0




= 1[ 2i
1 ]


0 −1

1 0

 1 0

−2− 4i 1

 ,Σ

0 −1

1 0

 ,

 1 0

−2− 4i 1




= 1[ 2i
1 ]


 1 0

−2 1

 1 0

−4i 1

 ,Σ

 1 0

−2 1

 ,

 1 0

−4i 1




= 1[ 2i
1 ]


 1 0

−4i 1

 , 1




= 0.
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The second summand:

1[ 2i
1 ]


−1 + 2i −2 + 2i

1 1

 , 1



2i −1

1 0

 , 1




= 1[ 2i
1 ]


 −2 1− 2i

1 + 2i −1

 ,Σ

−1 + 2i −2 + 2i

1 1

 ,

2i −1

1 0




= 1[ 2i
1 ]


2 −1

1 0

1 + 2i −1

0 1 + 2i

 ,Σ

−1 + 2i −2 + 2i

1 1

 ,

2i −1

1 0




= 1[ 2i
1 ]


1 + 2i −1

0 1 + 2i

 ,Σ

2 −1

1 0

 ,

1 + 2i −1

0 1 + 2i


Σ

−1 + 2i −2 + 2i

1 1

 ,

2i −1

1 0




= 0.



Chapter 3. A ramified genuine Hecke algebra 176

The third summand:

1[ 2i
1 ]


−1 + 2i −1

1 0

 , 1



2i −1

1 0

 , 1




= 1[ 2i
1 ]


−1 + 2i 1− 2i

2i −1

 ,Σ

−1 + 2i −1

1 0

 ,

2i −1

1 0




= 1[ 2i
1 ]


−1 1

2i −1− 2i

 ,Σ

−1 + 2i −1

1 0

 ,

2i −1

1 0


Σ

−1 1

2i −1− 2i

 ,

1 + 2i 0

0 1 + 2i




= 1[ 2i
1 ]


2i −1− 2i

1 −1

 ,Σ

 0 1

−1 0

 ,

−1 1

2i −1− 2i


Σ

−1 + 2i −1

1 0

 ,

2i −1

1 0


Σ

−1 1

2i −1− 2i

 ,

1 + 2i 0

0 1 + 2i




= 1[ 2i
1 ]


2i −1

1 0

 ,Σ

2i −1− 2i

1 −1

 ,

1 1

0 1


Σ

 0 1

−1 0

 ,

−1 1

2i −1− 2i

Σ

−1 + 2i −1

1 0

 ,

2i −1

1 0


Σ

−1 1

2i −1− 2i

 ,

1 + 2i 0

0 1 + 2i




= 1[ 2i
1 ]


2i −1

1 0

 , 1




= 1.

Finally, we have (
1[ 2i

1 ]ĤȳĤ
)

= 21[ 1
0 ] + 1[ 2i

1 ].

Choose another basis {
1[ 2i

1 ] + 1[ 1
0 ],1[ 2i

1 ] − 1[ 1
0 ]

}
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of W K̂π(4). Let W (3) be the line spanned by
{
1[ 2i

1 ] + 1[ 1
0 ]

}
. Observe that

(
1[ 2i

1 ] + 1[ 1
0 ]

)
ĤȳĤ = 3

(
1[ 2i

1 ] + 1[ 1
0 ]

)
;

and (
1[ 2i

1 ] + 1[ 1
0 ]

)
Ĥt̄Ĥ = −1

(
1[ 2i

1 ] + 1[ 1
0 ]

)
.

Thus W (3) is the 3-eigenspace of ŷ and the −1-eigenspace of t̂.

Define W (−1) to be the complement of W (3) in W K̂π(4): that is, the line spanned

by 1[ 2i
1 ] − 1[ 1

0 ]. We have

(
1[ 2i

1 ] − 1[ 1
0 ]

)
ĤȳĤ = −1

(
1[ 2i

1 ] − 1[ 1
0 ]

)
;

and (
1[ 2i

1 ] − 1[ 1
0 ]

)
Ĥt̄Ĥ = −1

(
1[ 2i

1 ] − 1[ 1
0 ]

)
.

Thus W (−1) is the −1-eigenspace of ŷ and the −1-eigenspace of t̂. 2



Appendix A

Notes on Chapter 2

A.1 Sage code

The following Sage code is used to calculate H2(∼ \D′, κZ) ∼= Z(5).

Recall the code used to determine the action of the elements γ1, γ2, γ3, γ4 on

V := IndΓ
Γ′(κQ): that is, the list ‘gammaactionK’.

F.<i> = NumberField(x^2+1)

R = F.ring_of_integers()

pi = F.ideal(1+i)

k = R.residue_field(pi,’b’)

kk = R.quotient_ring(2,’b’)

kkk = R.quotient_ring(2*pi,’b’)

kkkk = R.quotient_ring(4,’b’)

kkkkk = R.quotient_ring(4*pi,’b’)

M = MatrixSpace(F,2)

m = MatrixSpace(k,2)

mm = MatrixSpace(kk,2)

mmm = MatrixSpace(kkk,2)

mmmm = MatrixSpace(kkkk,2)

quotient0 = [M([1,0,0,1]),M([0,1,-1,0]),M([1,1,0,1]),M([1,0,1,1]),

M([1,-1,1,0]), M([0,-1,1,1])]
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quotient1 = [M([1,0,0,1]),M([i,0,0,-i]), M([1,1+i,0,1]),

M([1,0,1+i,1]), M([i,1+i,0,-i]), M([i,0,1+i,-i]),

M([1,1+i,1+i,1+2*i]), M([i,1+i,1+i,2-i])]

quotient2 = [M([1,0,0,1]),M([1,2,0,1]), M([1,0,2,1]),

M([-1,0,0,-1]), M([-1,2,0,-1]), M([-1,0,2,-1]), M([1,2,2,5]),

M([-5,2,2,-1])]

quotient3 = [M([1,0,0,1]),M([3-6*i,4,-4,-1-2*i]), M([1,2+2*i,0,1]),

M([1,0,2+2*i,1]), M([-5+2*i,2+2*i,4,-1-2*i]),

M([-5+2*i,4,2+2*i,-1-2*i]), M([1,2+2*i,2+2*i,1+8*i]),

M([-1+2*i,2+2*i,2+2*i,3-2*i])]

quotient0m = [m([1,0,0,1]),m([0,1,1,0]),m([1,1,0,1]),m([1,0,1,1]),

m([1,1,1,0]),m([0,1,1,1])]

quotient1mm = [mm([1,0,0,1]), mm([i,0,0,-i]), mm([1,1+i,0,1]),

mm([1,0,1+i,1]), mm([i,1+i,0,-i]), mm([i,0,1+i,-i]),

mm([1,1+i,1+i,1+2*i]), mm([i,1+i,1+i,2-i])]

quotient2mmm = [mmm([1,0,0,1]), mmm([1,2,0,1]),

mmm([1,0,2,1]), mmm([-1,0,0,-1]),

mmm([-1,2,0,-1]), mmm([-1,0,2,-1]),

mmm([1,2,2,5]), mmm([-5,2,2,-1])]

quotient3mmmm = [mmmm([1,0,0,1]), mmmm([3-6*i,4,-4,-1-2*i]),

mmmm([1,2+2*i,0,1]), mmmm([1,0,2+2*i,1]),

mmmm([-5+2*i,2+2*i,4,-1-2*i]), mmmm([-5+2*i,4,2+2*i,-1-2*i]),

mmmm([1,2+2*i,2+2*i,1+8*i]), mmmm([-1+2*i,2+2*i,2+2*i,3-2*i])]

representatives = [a*b for a in quotient1 for b in quotient3]
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def Decomposition(gamma):

r = quotient0m.index(m(gamma))

rep0 = quotient0[r]

gamma2 = gamma*rep0.inverse()

a = quotient1mm.index(mm(gamma2))

rep1 = quotient1[a]

gamma3 = rep1^-1*gamma2

u = quotient2mmm.index(mmm(gamma3))

rep2 = quotient2[u]

gamma4 = gamma3*rep2^-1

b = quotient3mmmm.index(mmmm(gamma4))

rep3 = quotient3[b]

gamma5 = rep3^-1*gamma4

return([rep1,rep3,gamma5,rep2*rep0])

gammainverselist = [M([0,-i,-i,0]),M([0,1,-1,0]),M([1,-i,-i,0]),

M([1,-1,1,0])]

def residuesymbol(x,y):

K = R.residue_field(y)

xbar = K(x)

answer = xbar^((norm(y)-1)/2)

if answer == K(1):

return 1

elif answer == K(-1):

return -1

elif answer == K(0):

return 0

def legendresymbol(x,y):

factors = F.factor(y)
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answer = prod([residuesymbol(x,p[0]) for p in factors if p[1]%2])

return answer

def kappa(A):

c = A[1][0]

d = A[1][1]

return legendresymbol(c,d)

matrixlist = []

for kk in range(4):

gamma = gammainverselist[kk]

for ii in range(64):

r = representatives[ii]

answer = Decomposition(gamma*r)

newrep = answer[0]*answer[1]

jj = representatives.index(newrep)

kappavalue = kappa(answer[2])

matrixlist.append([ii,jj,kk,kappavalue])

def func(ii,jj,kk):

for entry in matrixlist:

if entry[0]==ii and entry[1]==jj and entry[2]==kk:

return entry[3]

return 0

Finally,

gammaactionK = [Matrix([[func(ii,jj,kk) for ii in range(64)]

for jj in range(64)]) for kk in range(4)]

Then we put

kernels = [(1-gammaactionK[kk]).right_kernel() for kk in range(4)]
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generators = []

for W in kernels:

generators=generators+W.basis()

L = ZZ^64

subspace_Z=L.span(generators)

The group ‘H2Z’ is H2(∼ \D′, κZ).

H2_Z=L.quotient(subspace_Z)

The output is that ’H2Z’ has rank 5.

A.2 Boundary cohomology

The purpose of this appendix is to show that

H2(Γ∞, E2,2(F )) ∼= F, and

H2(Γ∞, Ind Γ
Γ′(κF ) ⊗

F
E2,2(F )) ∼= F (5).

Recall that if 2 is invertible in M , then:

H2(Γ∞,M) ∼= M{±1}/((1− a′)M + (1− d′)M + (1− e′)M). (A.1)

We define, as in Appendix A.1,

F.<i> = NumberField(x^2+1)

R = F.ring_of_integers()

pi = F.ideal(1+i)

k = R.residue_field(pi,’b’)

kk = R.quotient_ring(2,’b’)

kkk = R.quotient_ring(2*pi,’b’)

kkkk = R.quotient_ring(4,’b’)

kkkkk = R.quotient_ring(4*pi,’b’)

M = MatrixSpace(F,2)

m = MatrixSpace(k,2)
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mm = MatrixSpace(kk,2)

mmm = MatrixSpace(kkk,2)

mmmm = MatrixSpace(kkkk,2)

quotient0 = [M([1,0,0,1]),M([0,1,-1,0]),M([1,1,0,1]),M([1,0,1,1]),

M([1,-1,1,0]), M([0,-1,1,1])]

quotient1 = [M([1,0,0,1]),M([i,0,0,-i]), M([1,1+i,0,1]),

M([1,0,1+i,1]), M([i,1+i,0,-i]), M([i,0,1+i,-i]),

M([1,1+i,1+i,1+2*i]), M([i,1+i,1+i,2-i])]

quotient2 = [M([1,0,0,1]),M([1,2,0,1]), M([1,0,2,1]),

M([-1,0,0,-1]), M([-1,2,0,-1]), M([-1,0,2,-1]), M([1,2,2,5]),

M([-5,2,2,-1])]

quotient3 = [M([1,0,0,1]),M([3-6*i,4,-4,-1-2*i]), M([1,2+2*i,0,1]),

M([1,0,2+2*i,1]), M([-5+2*i,2+2*i,4,-1-2*i]),

M([-5+2*i,4,2+2*i,-1-2*i]), M([1,2+2*i,2+2*i,1+8*i]),

M([-1+2*i,2+2*i,2+2*i,3-2*i])]

quotient0m = [m([1,0,0,1]),m([0,1,1,0]),m([1,1,0,1]),m([1,0,1,1]),

m([1,1,1,0]),m([0,1,1,1])]

quotient1mm = [mm([1,0,0,1]), mm([i,0,0,-i]), mm([1,1+i,0,1]),

mm([1,0,1+i,1]), mm([i,1+i,0,-i]), mm([i,0,1+i,-i]),

mm([1,1+i,1+i,1+2*i]), mm([i,1+i,1+i,2-i])]

quotient2mmm = [mmm([1,0,0,1]), mmm([1,2,0,1]),

mmm([1,0,2,1]), mmm([-1,0,0,-1]),

mmm([-1,2,0,-1]), mmm([-1,0,2,-1]),

mmm([1,2,2,5]), mmm([-5,2,2,-1])]



Appendix A. Notes on Chapter 2 184

quotient3mmmm = [mmmm([1,0,0,1]), mmmm([3-6*i,4,-4,-1-2*i]),

mmmm([1,2+2*i,0,1]), mmmm([1,0,2+2*i,1]),

mmmm([-5+2*i,2+2*i,4,-1-2*i]), mmmm([-5+2*i,4,2+2*i,-1-2*i]),

mmmm([1,2+2*i,2+2*i,1+8*i]), mmmm([-1+2*i,2+2*i,2+2*i,3-2*i])]

representatives = [a*b for a in quotient1 for b in quotient3]

def Decomposition(gamma):

r = quotient0m.index(m(gamma))

rep0 = quotient0[r]

gamma2 = gamma*rep0.inverse()

a = quotient1mm.index(mm(gamma2))

rep1 = quotient1[a]

gamma3 = rep1^-1*gamma2

u = quotient2mmm.index(mmm(gamma3))

rep2 = quotient2[u]

gamma4 = gamma3*rep2^-1

b = quotient3mmmm.index(mmmm(gamma4))

rep3 = quotient3[b]

gamma5 = rep3^-1*gamma4

return([rep1,rep3,gamma5,rep2*rep0])

We define the function “kappa” as in Appendix A.1. Put

gammaboundarylist = [M([-i,0,0,i]),M([-i,-1,0,i]), M([1,-1,0,1])]

“gammaboundarylist” is the list of inverses of {a′, d′, e′}. Proceeding:

matrixlist = []

for ll in range(3):

gamma = gammaboundarylist[ll]

for ii in range(64):

r = representatives[ii]

answer = Decomposition(gamma*r)
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newrep = answer[0]*answer[1]

jj = representatives.index(newrep)

kappavalue = kappa(answer[2])

matrixlist.append([ii,jj,ll,kappavalue])

def func(ii,jj,kk):

for entry in matrixlist:

if entry[0] == ii and entry[1] == jj and entry[2] == kk:

return entry[3]

return 0

Finally, we calculate the quotient (A.1) using the following:

E = MatrixSpace(F,3)

gammaboundaryactionS = [E([-1,0,0,0,1,0,0,0,-1]),

E([-1,i,1,0,1,-2*i,0,0,-1]), E([1,1,1,0,1,2,0,0,1])];

gammaboundaryactionSC = [E([-1,0,0,0,1,0,0,0,-1]),

E([-1,-i,1,0,1,2*i,0,0,-1]),E([1,1,1,0,1,2,0,0,1])]

gammaboundaryactionSSC = []

for r in range(3):

temp1 = gammaboundaryactionS[r]

for s in range(3):

temp2 = gammaboundaryactionSC[s]

if r == s:

answer = temp1.tensor_product(temp2)

gammaboundaryactionSSC.append(answer)

Space1_SSC = MatrixSpace(F,9)

Space2_SSC = F^9

images_SSC = [Space1_SSC(1-gammaboundaryactionSSC[p]).image()

for p in range(3)]
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generators_SSC = []

for W in images_SSC:

generators_SSC=generators_SSC+W.basis()

subspace_SSC = Space2_SSC.span(generators_SSC);

H2_boundarySSC = Space2_SSC.quotient(subspace_SSC)

The space “H2 boundarySSC” is of dimension 1. It is H2(Γ∞, E2,2(F )).

Next we calculate H2(Γ∞, Ind Γ
Γ′(κF ) ⊗

F
E2,2(F )).

gammaboundaryactionK = [Matrix([[func(ii,jj,kk) for ii in range(64)]

for jj in range(64)]) for kk in range(3)]

gammaboundaryactionKSSC = []

for r in range(3):

temp1 = gammaboundaryactionSSC[r]

for s in range(3):

temp2 = gammaboundaryactionK[s]

if r == s:

answer = temp1.tensor_product(temp2)

gammaboundaryactionKSSC.append(answer)

V = MatrixSpace(F,576)

VV = F^576

images_KSSC = [V(1-gammaboundaryactionKSSC[p]).image() for p in range(3)]

generators_KSSC = []

for W in images_KSSC:

generators_KSSC=generators_KSSC+W.basis()

subspace_KSSC = VV.span(generators_KSSC)

H2_boundaryKSSC = VV.quotient(subspace_KSSC)



Appendix A. Notes on Chapter 2 187

The space “H2 boundaryKSSC” is of dimension 5.

A.3 The definition of cusp cohomology

Suppose that Υ is a finite index subgroup of SL2(O), andM is a finite-dimensional

complex representation of Υ. The purpose of Appendix A.3 is to show that the def-

inition of the cusp cohomology Hq(Υ,M) as given in the introduction, is equivalent

to the definition we gave in Section 2.4. More precisely, we must show that the image

of the map (see (0.5))

j : Hq
cts(SL2(C), L2

0(Υ\SL2(C))∞ ⊗M) −→ Hq(Υ,M)

which we shall still denote by Hq
cusp(Υ,M), is the same as the kernel of the restriction

map Hq(Υ,M) → Hq(U(Υ),M) for q = 1, 2 (see Section 2.4.1), which we shall

denote by Hq
! (Υ,M).

Recall, from the introduction, that L2
d(Υ\SL2(C)) is the discrete spectrum of

L2(Υ\SL2(C)). The inclusion of the space of smooth vectors L2
d(Υ\SL2(C))∞ into

C∞(Υ\SL2(C)) induces a map

Hq
cts(SL2(C), L2

d(Υ\SL2(C))∞ ⊗M) −→ Hq(Υ,M)

whose image we denote by Hq
(2)(Υ,M), and

Hq
! (Υ,M) ⊂ Hq

(2)(Υ,M). (A.2)

On the other hand, Borel [4] has shown that

Hq
cusp(Υ,M) ⊂ Hq

! (Υ,M). (A.3)

We observed in Section 1.4.1.2 that the only irreducible unitary representation

($∞, H) of SL2(C) which occurs in the discrete spectrum L2
d(Υ\SL2(C)) and which

satisfies Hq
cts(SL2(C), H⊗M) 6= 0 is the continuous series representation we denoted

by ($∞(ν1, ν2), B(ν1, ν2)). In fact,

Hq
cts(GC, B(ν1, ν2)⊗M) =

C if q = 1, 2

0 otherwise
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One can show that ($∞(ν1, ν2), B(ν1, ν2)) is tempered, and by a result of Wallach

and Harish-Chandra [37, Theorem 4.3], it occurs with its full multiplicity in the

cuspidal spectrum L2
0(Υ\SL2(C)). This means that

Hq
cusp(Υ,M) ∼= Hq

(2)(Υ,M). (A.4)

It follows, from (A.2), (A.3) and (A.4), that

Hq
cusp(Υ,M) ∼= Hq

! (Υ,M).
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Notes on Chapter 3

B.1 Multiplying double cosets inH(G,ZH)

Recall that the decompositions:

TH = ZH ∪ ZHt

THyTH = ZHyZH ∪ ZHytZH (B.1)

THxTH = ZHxZH ∪ ZHxtZH ∪ ZHtxZH ∪ ZHtxtZH

THuTH = ZHuZH ∪ ZHtuZH

(where all the unions are disjoint) gave us a basis for H(G,ZH) as a vector space.

To find its structure as an algebra, we must multiply double cosets, and to do this

we must write each double ZH-coset as a disjoint union of single ZH-cosets:

ZHgZH =
⋃
i

ZHghi where hi ∈ ZH/(ZH ∩ gZHg−1).

That is, we must find specific representatives for ZH/(ZH ∩ gZHg−1) for each

representative g in ZH\G/ZH. Sage gives the following data:

ZHxZH =
3⋃
i=1

ZHxhi for

hi ∈


1 0

0 1

 ,

1 1

1 2

 ,

1 0

1 1

 ;

189
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ZHxtZH =
3⋃
i=1

ZHxthi for

hi ∈


1 0

0 1

 ,

1 1

1 2

 ,

1 0

1 1

 ;

ZHtxZH =
3⋃
i=1

ZHtxhi for

hi ∈


1 0

0 1

 ,

1 1

1 2

 ,

1 0

1 1

 ;

ZHtxtZH =
3⋃
i=1

ZHtxthi for

hi ∈


1 0

0 1

 ,

1 1

1 2

 ,

1 0

1 1

 ;

ZHyZH =
3⋃
i=1

ZHyhi for

hi ∈


1 0

0 1

 ,

1 0

1 1

 ,

1 −1

1 0

 ;

ZHytZH =
3⋃
i=1

ZHythi for

hi ∈


1 0

0 1

 ,

1 0

1 1

 ,

1 −1

1 0

 ;

ZHuZH =
6⋃
i=1

ZHuhi for

hi ∈


1 0

0 1

 ,

1 1

0 1

 ,

1 −1

1 0

 ,

0 −1

1 0

 ,

1 0

1 1

 ,

0 −1

1 1

 ;

and

ZHutZH =
6⋃
i=1

ZHuthi for

hi ∈


1 0

0 1

 ,

1 1

0 1

 ,

1 −1

1 0

 ,

0 −1

1 0

 ,

1 0

1 1

 ,

0 −1

1 1

 .
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A “degree” argument can help us check the above decompositions. For example,

by (B.1),

degZH(THyTH) = degZH(ZHyZH ∪ ZHytZH)

Since degZH(TH) = 2, it follows that degZH(THyTH) = 2 ∗ degTH(THyTH) =

2 ∗ 3 = 6. Since∣∣ZH/(ZH ∩ yZHy−1)
∣∣ =

∣∣ZH/(ZH ∩ ytZH(yt)−1)
∣∣ ,

we must have degZH(ZHyZH) = degZH(ZHytZH) = 3.

The following code multiplies the double cosets:

HZdoublecosets = [mmmm([1,0,0,1]),z,z*t,z*y,z*y*t,x,x*t,t*x,t*x*t,

u,u*t]

littlehdashforx = [mmmm([1,0,0,1]),mmmm([1,1,1,2]),mmmm([1,0,1,1])]

littlehdashforxt = [mmmm([1,0,0,1]),mmmm([1,1,1,2]),mmmm([1,0,1,1])]

littlehdashforyt = [mmmm([1,0,0,1]),mmmm([1,0,1,1]),mmmm([1,-1,1,0])]

littlehdashfory = [mmmm([1,0,0,1]),mmmm([1,0,1,1]),mmmm([1,-1,1,0])]

littlehdashforu = [mmmm([1,0,0,1]),mmmm([1,1,0,1]),mmmm([1,-1,1,0]),

mmmm([0,-1,1,0]),mmmm([1,0,1,1]),mmmm([0,-1,1,1])]

littlehdashfortu = [mmmm([1,0,0,1]),mmmm([1,1,0,1]),mmmm([1,-1,1,0]),

mmmm([0,-1,1,0]),mmmm([1,0,1,1]),mmmm([0,-1,1,1])]

littlehdashfortx = [mmmm([1,0,0,1]),mmmm([1,1,1,2]),mmmm([1,0,1,1])]

littlehdashfortxt = [mmmm([1,0,0,1]),mmmm([1,1,1,2]),mmmm([1,0,1,1])]

for h1 in littlehdashforx:

for h2 in littlehdashfory:

answer = x*h1*y*h2

for b in ZH:

for jj in range(11):

if mmmm(b*answer) == HZdoublecosets[jj]:

print (jj)

This code as written, returned, for example, [8, 9]. That is,

x̂ ∗ ŷ = ˆtxt+ û.
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[16] J. Elstrodt, F. Grunewald, and J. Mennicke. Groups acting on Hyperbolic space.

Springer, 1997.

[17] Y. Z. Flicker. Automorphic forms on covering groups of GL(2). Inventiones

Math., (57):119–182, 1980.

[18] S. Gelbart and I. Piatetski-Shapiro. On Shimura’s correspondence for modular

forms of half-integral weight. Automorphic forms, Representation theory and

Arithmetic, pages 1–39, 1981.

[19] S.S. Gelbart. Automorphic forms on adèle groups. Princeton University Press,
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