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Abstract

The aim of this thesis is to contribute to the understanding of genuine cusp
forms on the group SLy/Q(i), from a computational point of view. We show, via
the generalised Eichler-Shimura-Harder isomorphism, that a genuine cusp form of
cohomological type exists at level SLy(Z[i],4)SLy(Z). We show, by calculating co-
homology groups, that such a form exists at weight (2,2). Finally, we compute the
genuine quotient of the Hecke algebra acting on representations of SLa(Qy(i)) con-
taining non-zero SLo(Zs[i],4)S Lo(Zs)-fixed vectors. When such a representation @
corresponds to an unramified representation of S Ly (Q5(7)), we show that the space of
S Lo(Zsi],4)S Lo(Zs)-fixed vectors in @ is a sum of two 1-dimensional components.

We determine which 1-dimensional representations arise in this way.
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Chapter 0O

Introduction

The aim of this thesis is to contribute to the understanding of genuine cusp forms
on SLy/Q(1), from a computational point of view. These so-called “Bianchi modular
forms” are of half-integer weight, and their level is a subgroup of finite index of
SLo(Z[i],4n)SLo(Z), for some non-zero ideal n C Z[i|, where SLy(Z][i],4n) is the
group of matrices in SLy(Z[i]) which are congruent to the identity modulo 4n. It is
of interest to determine the (finite) dimension of the space of such forms, for given
level and weight, and in particular, how small n needs to be for the space to be of
positive dimension. In the first chapter of this thesis, we prove that n = Z[i] will
suffice: there is a non-trivial genuine cusp form at level SLy(Z[i],4)SLo(Z), for some
weight.

In chapter two, we show, computationally, that there is a non-trivial cusp form of
level S Lo(Z][i],4)SLy(Z) at weight (2,2). Our approach is via the generalised Eichler-
Shimura-Harder isomorphism: we calculate the cohomology of SLy(Z]i],4)SL2(Z)
with certain non-trivial coefficients. This well-known method involves plugging in-
formation from the fundamental domain for the group SLo(Z[i]) into a spectral se-
quence. We use this method to compute the rational cohomology of some congruence
subgroups, as well as the integral cohomology in some cases.

Jacquet and Langlands [24] re-wrote the theory of integral weight automorphic
forms in the language of representation theory: it was found that an automorphic
form generates the space of a “representation” of the adele group of GLs, or of SL,.
Gelbart and Piatetski-Shapiro [18,20] generalised this theory to half-integral weight

forms; in this case, however, one obtains a representation of the adele group of S Lo,
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the two-fold cover of SL,. The notion of “level” of a Bianchi modular form extends
to these representations: in the case of the number field Q(7), the level of such a

representation is a compact open subgroup of

The local component of these representations at the even prime, 1+ ¢, has an action
of the group SLs(Qy(i)). Suppose that its subspace of SLy(Zs[i], 41)S Lo(Zy)-fixed
vectors is not trivial. There is no clear picture of what these representations should
look like. The corresponding question over Q, however, has been solved fairly recently
by Loke and Savin [28].

In the third chapter of this thesis, we completely determine the (compact part of
the) Hecke algebra acting on the even component of a representation. We compute
the action explicitly on a representation when n is the trivial ideal, that is, when

the level is SLo(Zsli],4)SLa(Zs) x ]  SLa(Z[i),). We find that the subspace
v finite, odd

of SLy(Zsi],4)S Lo(Zs)-fixed vectors is two-dimensional: it is the sum of two one-

dimensional eigenspaces for the action of a Hecke operator. We hope this goes a long

way towards a good definition of an “unramified” representation of SLq(Qy(i)).

Background

If d is a square-free, positive integer, let F_; = Q(v/—d) be an imaginary quadratic
number field with integer ring O_4. Groups of the form GLs(0_,;) and SLy(0_,) are
called “Bianchi groups”; living inside GLs(C), they are discrete, and act properly
discontinuously on 3-dimensional real upper-half space H = {(z,r) |z € C,r > 0}.

Explicitly, if g = (2 %) € GLs(C), define
g-(z,m)=(2,r")

where

J_ (az 4 b)(cz + d) + aer? , lad — be|r

: = . 0.1
ez + d2 + |er]2 " ez dR |2 (0.1)

and |z| = 2Z is the usual norm in C.
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Let $ be the ring of quaternions. It is 4-dimensional as a vector space over R,

with basis 1,1, 7, k. If we identify H with a subset of $) in the following way:

H—$

(2,7) = (z +iy,r) —> g = z + iy + jr, (0.2)
then the action (0.1) takes the more aesthetically pleasing form:
9-q=(ag+Db)(cqg+d)". (0.3)

The stabilizer of the point j € §) is the group

d
R* . SU(2) = “Vledec, (¢,d) (0,0
c d

Now fix d = 1. Then F_; = Q(i), and O_; = Z[i]. Suppose that T is a finite
index subgroup of the Bianchi group SLy(Z[i]). Let L*(Y\SLy(C)) denote the space
of complex-valued square integrable functions on Y\SLy(C); we'll regard this as a
representation of SLy(C). The space L2(T\SLy(C)) is a direct sum of the continuous
spectrum LZ(T\SLy(C)) and the discrete spectrum L3(T\SLy(C)) [4,21]. By a well-
known result of Gelfand and Piatetski-Shapiro, the latter space is a Hilbert direct

sum of irreducible subspaces with finite multiplicities:
Li(Y\SLy(C)) = P m(w, Y)H., (0.4)

where w ranges over the set of equivalence classes of irreducible unitary representa-
tions of SLy(C).

Write Lg(T\SLy(C))> for the subspace of smooth cuspidal functions in L3(T\SLy(C)),
and let M be a finite-dimensional, irreducible representation of SLy(C). It was

Borel [4] who established that the map
j + H&(SLa(C), L§(T\SLy(C))™ ® M) — HU (Y, M) (0.5)

is injective for all non-negative integers q. The image of j is called the cuspidal

cohomology and is written HZ (Y, M). Results (0.4) and (0.5) can be used to show

cusp

that
HE, (T, M) =) m(w, 1) HL,(SLo(C), HE © M) for g = 1,2

cusp
w
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where H2 means the subspace of smooth vectors in H,, and w ranges over the
irreducible unitary representations of SLy(C). Suppose now that T is a congruence
subgroup. Let A be the adele ring of Q(¢), let A be its finite adeles, and let K ;(T)

be the closure of T in SLy(Ay). There is an isomorphism
T\SLy(C) = SLy(Q(i))\SLa(A)/ K¢(T).

Let L?(SLy(Q(i))\SLa(A)/K(T)) be the space of square integrable functions on
SLy(Q(i))\SL2(A)/K¢(Y). It is the direct sum of a continuous spectrum and a
discrete spectrum L3(SLy(Q(:))\SLa(A)/K;(Y)). There are results analogous to
(0.4), (0.5), and there is a decomposition, for ¢ = 1,2,

H (1. M) = @) m(e, Y) HA,(SLa(C), HE, @ M) @ Hz{ ™ (0.6)

cusp
w

where the sum is taken over the set of cuspidal automorphic representations w =
Wi ® wWe of SLy(A) of level K¢(T). Equation (0.6) is called the generalised Eichler-
Shimura-Harder isomorphism.

Suppose that ps is the multiplicative group of square roots of unity in Q(z) C C.

Consider the central extension
1 — piy — SLy(A) — SLy(A) — 1 (0.7)

by which the metaplectic group SLy(A) is defined. The extension splits on S Ly(Q(7))
and on SLy(C)K¢(I"), where I is a congruence subgroup of SLy(Z]i]), and it there-
fore splits in two ways on the intersection I" = SLy(Q(i)) N SLy(C)K(I"). Let
SLy(C) be the pre-image of SLy(C) in SLy(A); it occurs in an extension

1 — pg —> SLy(C) — SLy(C) — 1. (0.8)
Dividing one splitting of (0.7) by the other on I, we get a homomorphism
kTN — J7%)

and a bijection between I and a subgroup IV of SLy(C). We can regard k as a
one-dimensional Q-representation kg of I'.
In this thesis, we shall be concerned with “genuine” objects on SLo(A). We say

that a function ¢ on SLy(A) is genuine if ¢(£g) = £¢(g) for all g € SLy(A) and for



Chapter 0. Introduction 5

all ¢ € o (note that p is contained in the centre of SLy(A)). In particular, if V is a
complex vector space, an irreducible representation p: SLy(A) — GL(V) is genuine
if the subgroup pus acts faithfully.

We shall write @(Q(z)) (resp. I/(\f(F’)) for the lift of the subgroup SL(Q(7))
(resp. K;(I")) to SLy(A). Denote by L2(SLy(Q(i))\SLz(A)/K;(I")) the space of
genuine, square integrable functions on @(Q(z))\S_LQ(A) / [/(\f(F’ ); it has a contin-

uous and a discrete part. The bijection
\SL,(C) = SLy(QU0)\SL(A)/Kr(T")

allows us to replace SLy(C) with SLy(C) in (0.4) and (0.5), and we obtain

cusp w

HE, (I kg © M) = @ m(w, I') HE (SL2(C), Hx @ vgw M) 0 HS" ) (0.9)

for ¢ = 1,2, where the sum is taken over the set of genuine, cuspidal automorphic
representations @ = Wy ® Wa of SLy(A). The expression (0.9) is the metaplectic

version of the generalised Eichler-Shimura-Harder isomorphism (0.6).

Computer-aided calculation

Many of the computations in this thesis are large. Notably, some cohomology
calculations and the determination of the genuine quotient of the Hecke algebra in
Chapter three. To mitigate the risk of human error, we have used Sage to carry out
most of this work. We have chosen to explain the algorithm in the body of the text
where we think necessary, and have otherwise relegated the code to the appendices

so as not to disrupt the discussion.



Chapter 1

Existence of a genuine cusp form

In this chapter, we shall show that a genuine cusp form, of level one and of
cohomological type, exists on the group SLy/Q(i) (Corollary 1.4.17). In particular,

there is a non-negative integer k£ such that
Heup(T"s kg @ Eii(C)) # 0.

The notation Ej x(C) shall be defined below.

Our method of proof rests on a theorem of Flicker [17], who formulates his result
in terms of the group GGL,. Despite the fact that we shall only apply Flicker’s result
to the group SLs, it will be necessary to give the background for the larger group
GLy. For this reason, the reader is warned that the notation in this chapter is
cumbersome, and many of the definitions may seem superfluous.

Sections 1.1 through to 1.4.2 form the necessary background: Sections 1.1 and
1.2 define the local and global metaplectic groups, on which these forms live. In

Propositions 1.2.3 and 1.2.7, we give an explicit description of the homomorphism
KT — g

which is of central importance in this thesis.

In Section 1.3, we sketch the interpretation of integral and half-integral weight
modular forms as functions on the group GLy(A) and its two-fold cover. In Sections
1.4.1 through to 1.4.2, we develop the local and global representation theory needed
to define a cuspidal automorphic representation, and we describe, in particular, those

representations of G Ls(C) which have cohomology (Section 1.4.1.2). Finally, in Sec-



Chapter 1. Existence of a genuine cusp form 7

tion 1.4.3, we give a modification of Flicker’s correspondence (Definition 1.4.19) which

enables us to derive our main result.

1.1 The local metaplectic groups

Once and for all, fix FF = F_; to be the imaginary quadratic field Q(7) and
O = O_; to be its ring of integers Z[i]. We shall denote by v a place of F, and
by F, the completion of F' at v. In particular, if v is the infinite place, then F, is
archimedean, and F,, = C. If v is finite, then F}, is non-archimedean, and is a finite
algebraic extension of the p-adic field Q,. There is a unique even place of F', namely
(14 14); by an abuse of notation, we shall write 7 both for the place, and the prime
in O. If F, is non-archimedean, let O, denote the ring of integers of F, and O, its
group of units. If z is an element of FX, we shall define its order by x = uv°*%®@ for
a unit v € 0.

Throughout the thesis, the group ps = {£1} C F will be the multiplicative
group of square roots of 1; the algebraic group GL, will be denoted by G until
further notice. If R is a ring, we shall denote the R points of G by G(R), unless
R = F,, in which case we shall denote these points by G,,.

In general, if H is a (multiplicative) locally compact group, a two-cocycle o on

H is a Borel-measurable map o : H x H — us with the properties
o(hyi, hohg)o(hg, hy) = o(hihs, hs)o(hi, hy) and o(1,h) = o(h,1) =1 (1.1)
We call the cocycle trivial if there is a map s : H — s such that
o(hy, hy) = s(hy)s(hy)s(hiho) ™" for all hy, hy € H.

In this thesis, we shall be concerned with a specific two-cocycle on G (Theorem
1.1.2 below) whose formula was given by Kubota [25]. Such a cocycle o determines

an exact sequence of groups
1l —py — H— H—1 (1.2)

where H is realised as the set of pairs {h,¢} with h € H and & € pp with multipli-
cation given by

{h1, &3 ha, &} = {haha, §1620(hi, ha) }
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The extension is called central because £ — {1,£} is an injective homomorphism
from p» to the centre of H. The group H has a natural locally compact topology
and the map H — H is a covering map.

If K is any subgroup of H, K will denote its full inverse image in H. We say
that the extension (1.2) splits over K if there is a map s : K — uy which satisfies
o(ky, ky) = s(kp)s(ky)s(kiks)™" for all ki, ky € K. Equivalently, K is the direct
product K = K x 1o for some subgroup KcH isomorphic to K. The extension
(1.2) is called trivial if it splits over H itself. Finally, we shall write K for the
inverse image of K™ in H, and not for the set of n-th powers of elements of K.

The quadratic Hilbert symbol ( , ), is a symmetric bilinear map from F* x F* to
pi2 which takes (z,y), to 1iff # in F)} is a norm from F,(,/y). In particular, (z,y),
is identically 1 if y is a square. Thus ( , ), is trivial on (F¥)? x (EF))? for every F,
and trivial on F* x F* itself if F, = C.

Some properties of the quadratic Hilbert symbol which we shall use repeatedly

are collected below.
Proposition 1.1.1. 1. For each F,, (, ), satisfies
(a,b), = (a,—ab), = (a, (1 — a)b),, (1.3)

and

(a,b), = (—ab,a + b),; (1.4)
2. If v is odd, (u,v), is identically 1 on OF x OF;

3. Ifv=m, and u in O is such that u =1 (mod ©*), then (u,u’), is identically

1 on OF;

4. Ifv=m, and a = a’' (mod 7°) for a € OF, then (a,b), = (a’,b)x for allb € F;

5. Ifa,be F*, then
H (CL, b)v = L (15)

v

the product being over all places v of F';
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6. If v lies above the rational prime p, and if a € Q, then
(a,b)y = (a, N (b)),
where (-,-), denotes the Hilbert symbol in Q,, and N is the Norm map N :
Fy — Q.

Parts (2) and (3) of Proposition 1.1.1 can be found in O’Meara [31, §63] and
Artin-Tate [1, Chapter 12]. Part (4) is a consequence of Hensel’s Lemma for complete
local rings: if a = 1 (mod 7°), then a is a square in F,. Parts (1), (5) and (6) can be
found in [32, pp. 101-102].

Now suppose h = (2 %) and set z(h) equal to ¢ if ¢ # 0 and equal to d if ¢ = 0.

Theorem 1.1.2 (Kubota). The map w, : SLy(F,) x SLy(F,) — e defined by

wy(ha, ha) = (2(ha), 2(h2))o(=2(h1)z(h2), 2(hihs)) (1.6)
is a two-cocycle on SLy(F,). Moreover, this cocycle is trivial if and only if F, = C.

The exact sequence of locally compact groups determined by w, is
1 — Mo — SLQ(FU) — SLQ(FU) — 1.

The group SLy(F,) is also called a two-fold cover of SLy(F,). The first non-trivial
two-fold cover of SLy(k) for k a non-archimedean field was given by Weil [39] and
named the “metaplectic group”.

There is an extension of w, to G,: if g = (2Y) belongs to G,, write g =

(é deto(g) ) p(g) where

p(Q) = € SL2(FU> (17)

For g1, g2 in G,, define

(91, 92) = wo(P(91) %) p(g2))v(det(go), p(g1)) (1.8)
where .
10 10
hY = h (1.9)
0 vy 0 vy

and
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if
v(y, h) = : 70 (1.10)

(y,d), otherwise

if h =
c d

Proposition 1.1.3. The cocycle o, determines a non-trivial central extension of G,

by pa whose restriction to SLa(F,) x SLa(F,) is w,.

For a proof, see [20].
The group G, is thus realised as the set of pairs {g, ¢} with multiplication given

by {91,611 92, §o} = {9192, §16200(91, 92) }-
Let T,, N, and B, denote the following subgroups of G,:

aq 0
T, = a; € FUX ;
0 a9
N, = beF, ;;
0 1
a1
B, = a; € FY, be F, » =N/, =T,N,.
0 (05}

Further, let K, be the maximal compact subgroup of G, (U(2) if F, = C, and
G(0,) otherwise). In the case that v is the infinite place, write T¢, N¢ and Bg for
T,, N, and B, respectively, and let Z¢ denote the centre of G¢.

Remark 1.1.1. The reader is warned that we shall use the same notation (7, N,, B, K,)
when we mean the corresponding subgroups of SLs(F,). We hope any ambiguity shall
be eliminated by the context.

Note that the ideals (7!) and (4) in O, are equal. If a € O, a shall denote its

reduction modulo (4). Define a compact open subgroup K,(4) of G, by

K.(4) = a,b,¢,d € ZJAZ, ad —bc € OF | (1.11)
c d

and for any v, consider the extension

1 — g — Gy — Gy —> 1. (1.12)
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Proposition 1.1.4 (Kubota). The extension (1.12) splits over K, when v is finite
and odd, and splits over K.(4) when v = w. More precisely, for any finite v, if

a b
g= in Gy, set
c d
a b (c,d det(g))y ifcd #0 and ord,(c) is odd
Ky = (1.13)
c d 1 otherwise

Then, for all hy, hy € K, or K, (4),
O',U<h1, hg) = /iv(hl)/‘iv(hz)liv<h1h2>il (114)

Proof. When v is finite and odd, this is Kubota’s result [26, Theorem 2]. When

v is even, Kubota’s result applies to the group

10
G(O04,4) =<K v€G(0,) | v = (mod 4)
0 1

Observe that K.(4) = G(O,4)G(Z2). Hence, to prove the proposition, we must
show that when v = 7, the extension (1.12) splits on the group G(Z,).
Suppose that gi,g2 € G(Zs). Then both 0.(g1,92) and kr(g1)kx(g2)kr(g192) "

are a product of Hilbert symbols of the form
(x,y)r for some z,y € Zs.

But since x,y € Zs, each of these Hilbert symbols is 1 as a consequence of part (6)
of Proposition 1.1.1. Therefore, both r;(g1)kx(g2)kx(g192) " and o4(g1, g2) are 1, so
they are equal.

O

Definition 1.1.1. When F, = C, let k,(g) be the function which is identically 1 on
G,. If F, is non-archimedean, let k, be as in (1.13), and in general, let B,(g1, g2)

denote the 2-cocycle B,(g1, g2) = 0u(91, G2)ku(91) kv (ga) Fu(g1g2) L.

The cocycle 3, determines an equivalent extension to that determined by o,, but
B, has the added advantage that its restriction to K, x K, (respectively, K. (4) X
K,(4)) is identically 1, so K, (resp. K,(4)) lifts to a subgroup of G,, via k + {k, 1},
which we shall denote by K, (resp. K,(4)).



Chapter 1. Existence of a genuine cusp form 12

We collect here some properties of the cocycle §, and the extension (1.12) which

will be useful later.

Lemma 1.1.5. Let

a; bz
gi = S Bv, 1= 1, 2
0 ¢
Then @;(ghgz) = (al,Cz)v
Proof. Observe that
a; bz 1 0 a; bz
0 ¢ 0 a;c 0 a; 1
1 0 a; bl

It follows that

a; ascaby as by ap by
ou(91, 92) = wy E ] ]| aece B
0 a 0 a, 0 a;

= (a7', a3 )o(ar azt ar oo tas t ag ) o(azes, ait),

= (al,Cg)U by (13)
The proof is concluded by observing that

a b a b
Ky =1 for all € B,.

0 c 0 c

Corollary 1.1.6. The extension (1.12) splits on the subgroups N, and T?, where

T2 . aq 0

(2

a; € FUX2

0 (05}
It splits uniquely on N, and canonically on T?.
Corollary 1.1.7. The centre of G, is

_ z 0
Z(Gy) = . ;&
z

ZGFUX27§€M2
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We refer to [20, §2.1] for the proof.

Remark 1.1.2. The group T, C G, is not abelian. However, when T, is considered
as a subgroup of SLy(F),), it is abelian. On the other hand, Ti C G, is abelian. We

shall use these facts in Chapter 3.

1.2 The global metaplectic group

Let A be the adele ring of F', and A* its group of ideles, so that Gy := GLy(A)
is the restricted direct product [[' G, with respect to the subgroups K,. We write
Ay for [’ Fy, and G(A;) for [ Gh.

Accqé)ifioing to Proposition 1qi<40,o if g=1(9v),9 = (g,) € Ga, then B,(gy,9,) = 1 for
almost every v. Thus we can define 8a(g,¢") =[] 5v(9v,g.,) which is a two-cocycle

v
giving rise to the extension

1 — pig — Gy — Gy — 1. (1.15)

Note that Gy is not a restricted direct product of the local groups G, [18], but

rather a quotient of it, by the subgroup

{H €v S H (NQ)U

Consider the following subgroups of Gj:

€, = 1 for all but an even number of v} )

K =KM@4)x ][] K

v<oo,0dd

Gr := GLy(F) embedded diagonally.

Proposition 1.2.1. The extension (1.15) splits on the subgroup K’ of Ga via the
map ks — {kg, 1}.

Proof. This is just Proposition 1.1.4. O

In line with the notation above, we’ll denote this subgroup of G by K }

Proposition 1.2.2. For h € G, let

ka(h) =] ] ro(h) (1.16)
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the product extending over all (finite) primes of F. Then the map
h— {h,kas(h)} (1.17)
provides an isomorphism between G and a subgroup @F of Gy.

Proof. First note that if h = (2%) € Gp, then ¢ is a unit for almost all v, and
consequently k,(h) = 1 for almost all v. Therefore, the product appearing in (1.16)
is well-defined.

To prove the proposition it will suffice to show that ku(h1)ra(he)Ba(hi, he) =
Ka(hihy) for all hy, hy € Gp. Indeed, for such hy, hy, and for almost all v, all of the
entries of hy, hy are units, so o,(hy,he) = 1 by (2) of Proposition 1.1.1. For the

remaining v, we have
ay(h, ho) = (11,72)0(73,74)0
for 11,79, 73,74 in F'; and so by (5) of Proposition 1.1.1, [ | o, (h1, hy) = 1. Thus we've
shown that '
Ka(h1)ka(he)Ba(hy, he) = ka(hihs). (1.18)
O
Proposition 1.2.2 allows us to make sense out of the space G #\Ga.

Consider now the congruence subgroup I'(4) of G defined by

10
I'4)=94~v€GO) |~r= (mod 4) 7,
01

and observe that

F(4)G(Z) = Gr N G(C)K}.

We shall examine the splitting xa on I'(4)G(Z).

Let a,b € F* such that b is relatively prime to a and 2. Put (b) =[] v°"4®) the
product extending over all places v of F'. Of course, for almost all U,Uordv(b) = 0.
The v occuring in the product which satisfy ord,(b) # 0 will be relatively prime to
a and 2. Define the local quadratic power residue symbol (%) to be 1 if a = 6?2 for
some § € O, and —1 otherwise. The (global) quadratic power residue symbol (%)

F
is defined to be the product

(6),- I (™ =

v<00, odd
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We have

Proposition 1.2.3 (Kubota). Define a function

K:T(4) — po

Then

This is one of the main results of [26]. In fact, the proof of Proposition 1.2.3 rests

on the fact that

(2), -

vla

Corollary 1.2.4. The function k : I'(4) — ps is a character.

For a proof, see [20, p.27].
We shall collect some properties of the quadratic power residue symbol here for

later use.

Lemma 1.2.5 (Properties of the quadratic power residue symbol). Let ( ) :=( )p
denote the quadratic power residue symbol for the field F and let b, b/ € O be odd and

relatively prime (respectively) to a,a’ € O. Then,
(%) = (2) () 0 portcusar, (%) =1,
()= () (5)
()-(5)

1.

3. If a = d' (mod b) then

4. If b=V (mod a) and 4|a then

()= ()
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5. If aa’ =1 (mod b) then

6. If, additionally, b is in Q, then

()= Na)

b b Q’
where N : F — Q is the norm map, and (I)Q 18 the quadratic residue symbol
m Q,

7. If a and b are in Q, then

(-

8. If a,b € O are coprime, and if b is prime and odd, then

(%) a (mod b).

See [27, p.112] for parts (1),(3) and (6), and [32, p.100] for parts (2), (5) and
(8). We shall prove part (7). By part (6), if b € Q, then

§- (1),

However, since a € Q, we have N(a) = a?, and

(),

Lemma 1.2.6 (Quadratic reciprocity law). Let a = ay + ias,b = by + by be two

primes in O which are relatively prime and congruent to 1 (mod 2 + 2i). Then,

(0)(2) -

In particular, if either a or b is =1 (mod 4), then
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See [27, p. 195] for the analogous result for the quartic residue symbol in F' (the
quadratic residue symbol is the square of the quartic residue symbol in F').

The function x has an extension to [V = I'(4)G(Z) which we shall also call k.

Proposition 1.2.7. Define
KT — gy by
k(vh) = k() where y € I'(4), h € G(Z)
Then k is a character of T".

Proof. Observe that part (7) of Lemma 1.2.5 says that « is trivial on G(Z). If
1,72 € T(4), h1,ho € G(Z), and vy1hy = Yhy then k(75 '71) = k(hohi') = 1 so
k(71) = K(72). Hence k is well-defined.

We must show that k(y1h172h2) = K(71)k(72) for all 1,72 € T'(4) and all hy, hy €
G(Z). But, k(v1hiy2hs) = k(1 (h1y2hi ) hihy) = k(y1)k(hiyehih), so it will suffice

to show that

k(hyh™) = Kk(y) for all 4y € I'(4) and all & in a set of generators for G(Z).

A set of generators for G(Z) is given by [6

0
1

However,

1

-1 0)
0 -1 0)
so a different set of generators is:

0 -1\ (-1 0
1 o) \o 1

Let hy = (9 '). Then

k(hiyhi!') = &
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Write ad — bc = 4% for some & € {0,1,2,3}. Suppose that § = 0 or 2. Then
b= +c ! (mod a), and using (1), (2), (3) and (5) of Lemma 1.2.5, we have

(£)-()-0-E 6 s

Thus,
_ c
whirhi') = r(3) & () =1
Any element x € O has a factorization x = 72’ for 2/ = 1 (mod 7), where

a >0, € {0,1,2,3} (this is essentially due to the fact that the homomorphism

0% — (0/m*)* is bijective [16]). If we write ¢ = 7%¢’ then since ¢ = 0 (mod 4), we

BRCIBIOIONE

ad/  \a/\d/ \a)\d) \ad)"

Put @ = a3 + agi,d = dy + doi. The congruence a = d = 1 (mod 4), implies that
a; =d; =1 (mod 4) and as = dy = 0 (mod 4). By Lemma 1.2.6, we have

(1) = ot
a

= 1 since a3 + a3 — 1 =0 (mod 8) (1.21)

have a > 4. Now,

2, 2
d{+d5—1

= (—1)" 7 since d® +d: — 1 =0 (mod 8)
Similarly,

=1 since a; — ay — a3 — 1 =0 (mod 8)

dy—dy—d3—1

(—1)" 3 since d; —dy —d3 — 1 =0 (mod 8)
m
- (3)

Hence by (1) of Lemma 1.2.5, and the fact that ad = 1 (mod 4),

()= () = (%) 022
(Y (1) - a2

Since ad = +1 (mod ¢’),
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Thus we have shown that when § = 0 or 2, by (1.20), (1.22) and (1.23), that

k(hiyhi') = w(7).
If§=1o0r3,b=Fic!, and again, using (1), (2),(3) and (5) of Lemma 1.2.5,

we have
()= (2)- () ()
a a ad d
Now,
k(hiyhi') = k(v) & ) (é) =
However,

(aa) (2) - (2) (2

so by the case above with § = 0,2 and (1.21), we have our result.

)
Let hg = (' Y). Thenif vy =(2%) € I'(4),

b — -1 0 a b -1 0
0 1 c d 0 1

[ oa —b

N —c d

We are required to show that

but this is clear.

If hs3 = ({ 1) then

but ¢ = 0 (mod 4) hence

c c
(d — c> = <E> by (4) of Lemma 1.2.5.

O
When convenient, we shall think of x as a 1-dimensional representation of the
group IV. When we require this representation to be rational, we shall denote it by
KQ; explicitly,
ko : IV — GL1(Q).
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1.3 Modular forms over Q(7)

There are several ways to view modular forms on G := G Ly when the base field
is imaginary quadratic. For example, they can be described as functions on upper-
half space H; functions on the adele group G,; “representations” of the group Gy;
and cohomology classes of congruence subgroups of SLy(0). In this thesis, we shall
content ourselves with the description of modular forms both as “representations”
of the group Gy, and, via the generalised Eichler-Shimura-Harder isomorphism, as
cohomology classes.

We shall, however, give a rather loose interpretation of them as functions on the
adele group G since we feel this description highlights some of the salient points of
the theory.

Half-integral weight forms have similar interpretations, except the group G, is
replaced with its two-fold cover G,. We give the same treatment for half-integral

weight forms.

1.3.1 Integral weight forms

The material in this subsection is based on Bygott’s thesis [9] and Kudla’s paper
[3, Chapter 7]; we refer the reader there for much more detail. If H is a locally
compact multiplicative group, by a quasi-character x of H we mean a continuous
homomorphism of groups x : H — C*, and by a unitary character we mean a quasi-
character whose image is contained in S*, the set of complex numbers of norm 1.

Let Z(Gy) denote the centre of Gy; observe that
Z(Ga)/(Z(Gy) NGr) = A /F*.

Let ¢ : A*/F* — C* be a quasi-character, whose restriction to F = C*, denoted
oo, 18 trivial. The space Ay(¢) of cuspidal automorphic forms on G, with cen-
tral character ¢ is the space of functions ® : G, — C® subject to the following

conditions:
(A) ®(vg) = ®(g) for all v € G and g € Gy;

(B) ®(g¢) = ®(g)1p(det(C)) for all g € Gy and all ¢ € Z(Gp);
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(C) ®(gk) = ®(g) for all g € Gy and k € Ly, a compact open subgroup of G(Ay);

(D) The induced function @, : G¢ — C® is smooth, and is an eigenfunction of the

Casimir elements A, A;
(E) @ is slowly increasing;

(F) The space spanned by the right translates of ® by elements of K, is finite-
dimensional (we say that ® is right K -finite);

(G) @ satisfies the cuspidal condition:
1 b
/ ) g | db =0 for almost all g € G,.
N 01

Condition (D) has the following meaning. Let g = gl,(C) & gl,(C) be the com-
plexified Lie algebra of G¢. If @ € Ay(), then g acts on the induced function @,
by right translation, and this action extends to the universal enveloping algebra of g.
The centre of the universal enveloping algebra is generated by the centre of g and the
Casimir elements A, A’ and the centre of g acts trivially by (B) and by our assump-

tion that 1., is trivial on C*. For the definition of (E), we refer to [3, Chapter 7].

1.3.2 Half-integral weight forms
Recall the global extension (1.15)
1 — iy — Gy — Gy — 1
defining G. This extension splits over K} (Proposition 1.2.1). Observe that
Z(Gu)/(Z(Ga) N Gr) = A F** & pio;
let 1 : Z(Ga)/(Z(Gs) NGr) — C* be a genuine quasi-character: that is,

U(&g) = &d(g) for all g € Z(Ga), € € pa.

The space Ay (1)) of genuine cuspidal automorphic forms on Gy with central char-

acter 1 is the space of functions ® : G4 — C®) subject to the following conditions:
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(A”) ®(~g) = ®(g) for all v € @F and g € Ga;
(B") ®(g¢) = ®(g)w(¢) for all g € G and all ¢ € Z(Gy);

(C') ®(gk) = ®(g) for all g € Gy and k € L C IA(}, a compact open subgroup of
G(Ay):

(D’) The induced function @, : Ge¢ — C® is genuine, smooth when restricted to

G, and is an eigenfunction of the Casimir elements A, A’;
(E') @ is slowly increasing;

(F') The space spanned by the right translates of ® by elements of K, is finite-
dimensional (we say that ® is right K . -finite);

(G') ® satisfies the cuspidal condition:

—

1 _
/ ) g | db =0 for almost all g € Gy,
iF 01

—

where (3%) is the image of (} %) under the unique splitting of (1.15) on the
(

group {( 1)}

Remark 1.3.1. There is a function fs : H — C®) agsociated to each such ®. If L} =
K % in (C') above, then one can show that fs must have the following transformation
property:

fo(y7) = k(7) fo(T) for all y € T, 7 € H.

1.4 A modification of Flicker’s correspon-

dence

In 1973, in his seminal paper [36], Shimura associated to each classical Q-cusp
form of half-integer weight %, (odd k > 3) and Dirichlet character x, a modular form
of weight k£ —1 and character x2. In a series of open-ended questions at the end of his
report, Shimura suggested that his correspondence might lend itself to be understood

via representation theory. In a sequence of papers, Gelbart and Piatetski-Shapiro [18]
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did just this. They showed that a cusp form of half-integer weight could be thought
of as a “genuine automorphic representation” of G,. Moreover, their results were
valid over any number field. It was Flicker who, in 1980, gave a comprehensive
correspondence: not only for all “automorphic representations” of G (not just the
cuspidal ones), but also for n-fold covering groups of GLy. His work is based on
character theory: he uses the Selberg trace formula for both G, and its cover G,.
We won'’t delve into the details of his approach; we’ll simply collect the representation

theory we require and then describe the correspondence.

1.4.1 Local representation theory

Let v be a finite or infinite place, and recall that we’ve used the notation G,
for GLy(F,). The group G, is a locally compact Hausdorff space, and it is totally
disconnected (such groups are of ‘td-type’ in the terminology of [11]). By a repre-
sentation of G, we shall mean a pair (p, V') where V' is a complex vector space, and
p is a homomorphism from G, to the invertible linear maps in V; the representation
shall be called continuous if the map p is continuous. Our notation for (p, V') shall
vary between p, V' or the pair (p, V') according to what best suits the situation; we
hope this does not cause confusion. If H is a subgroup of G,,, we’ll write V# for the
subspace of vectors v € V' which satisfy p(h)(v) = v for all h € H.

We call (p, V') uniterisable if there exists a positive definite Hermitian form on
V' which is preserved by p(g) for all ¢ € G, . One can then take the completion
of V' with respect to the inner product defined by the form to obtain a unitary
representation of G, on a Hilbert space H.

If H is a group which contains p5 in the centre, recall that by a genuine repre-

sentation of H, we mean a representation (p, V') such that

p(€h) = Ep(h) for all € € py, h € H.

1.4.1.1 The archimedean place

Let (p,V) be a continuous representation of G¢ on a Hilbert space V. Such a

representation is called irreducible if it has no non-trivial closed subrepresentation;
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it is called wnitary if its restriction to U(2) is a Hilbert direct sum of irreducible
representations, each of which has finite multiplicity. We want to restrict the class

of representations in what follows.

Definition 1.4.1. The representation (p, V) is called admissible if its restriction to

SU(2) decomposes into finite-dimensional representations with finite multiplicities.

Recall the subgroups T, N¢, Be of Ge. Let (x1, x2) be a pair of quasi-characters
C* — C*. The pair (x1, x2) defines a character of the (abelian) group Tt if we put

T(c—>CX

aq 0
— x1(a1)xa(az).
0 a9

Let (7,C) be the 1-dimensional complex representation of the group B¢ given by:

aq b _1 1
T = |aray " |¢ x1(a1)xa(az).
)

Consider the vector space B(x1, x2) of measurable functions f on G¢ which satisfy

f(bg) =7(b)f(g) for all b € B¢, and

/ F (k)2 di < oo,

SU(2)
By the Iwasawa decomposition, G¢ = BcSU(2), and so the functions f are com-
pletely determined by their restriction to SU(2).

The group G acts on these functions via (fg)(y) = f(gy) and therefore B(x1, x2)
is the space of a representation of G¢ induced from that of (7,C). For any choice
of quasi-characters (x1, x2), we denote by p(x1, x2) the representation of G¢ whose
space is B(x1, X2)-

The representations p(xi, x2) are admissible, and in fact, every irreducible ad-
missible representation of G¢ is a subquotient of some such p(x1, x2)-

Schur’s Lemma [8] implies that if (p, V') is any irreducible admissible representa-
tion of the locally compact totally disconnected group G, then the centre F, of G,

acts by scalars on V. That is, there is a quasi-character x : F — C*, called the
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central character of (p,V'), such that

p (v) = x(2)(v) for all z € F) and v € V.
0 =z

The central character is called odd (resp. even) if x(—1) = —1 (resp. x(—1) = 1),
and the representation (p, V) is called odd (resp. even) if its central character is
odd (resp. even). The centre of G¢ is the set of scalar matrices Z¢ = {(29)
a € C*} C Bc and therefore the central character of p(xi, x2) is easily seen to be
X((59)) = X1 (@)x2(a).

Let B(pn) be the subspace of B(x1, x2) which transforms according to the unique
representation of SU(2) of dimension n + 1. Recall that if z € C, its complex conju-

gate is denoted by z. See [20] and the references therein for proof of the following:

Proposition 1.4.1 (Jacquet-Langlands). 1. p(x1, x2) is irreducible if x1(a1)x2(az) #
(ayay ) P(ayay ') * where p,q € Z=1. If p(x1, x2) is irreducible, it will be de-
noted by woo (X1, X2)-

2. If xa(a1)xz(a2) = (amay )P (@ay ") with p,q > 1, let
By(x1,x2) = ) B(pn).
n>p+q,n=p+q (2)

Then Bs(x1, X2) is the only proper invariant subspace of B(x1, x2). Let 0oo(X1, X2)
denote the representation of G¢ whose space is Bs(x1, X2), and let oo (X1, X2)
denote the representation of Gc with quotient space B/Bs(x1, X2)-

3. If xa(a1)x2(az) = (aray ') P(@ay ')~ with p,q > 1, let
Bi(xi,x2) = Z B(pn).
lp—q|<n<p+qn=p+q (2)

Then Bf(x1, x2) is the only proper invariant subspace of B(x1, x2). Let woo(X1, X2)
denote the representation of G¢ whose space is Bf(x1, X2), and let 0oo(X1, X2)

denote the representation with quotient space B/Bys(x1, X2)-

4. Woo(X1, X2) and we (X1, X5) are equivalent iff (x1,x2) = (X1, X5) or (x1,Xx2) =
(X5 X1),
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5. If 00o(X1, X2) and 0o (X), X5) are defined, then they are equivalent iff (x1, x2) =

(X715 x5) or (x1, x2) = (X5, X41)s

6. If x1(a1)x2(az) # (a1a;')P(ar1a;")?, then there exists a pair (v1,vs) of quasi-

characters such that o (X1, X2) = Woo(V1, V2).

When these representations are irreducible, we shall denote them by @w..(x1, X2)
and refer to them as representations of the principal series.
We shall ultimately want our representations to be unitary, and for this we need

the following:

Proposition 1.4.2. Fach irreducible unitarisable representation of G¢ is one of the

following type:

o wWoo(X1,X2) with x1,x2 unitary. Such representations are called continuous

series.

o wo(x1,X2) in which x1(ai)xa(az)™ = |ajaql® with 0 < s < 1. These are

called complementary series representations.

e A 1-dimensional representation of the form g — w(det(g)) for some unitary

character w : C* — S*t.

Remark. We will consider representations of SLy(C) below. Suffice it to say that
every irreducible unitary representation of G¢ is constructed from one of SLy(C) by
extending the central character to the whole of C*. In addition, unitarity holds for

G if and only if it holds for SLy(C).

1.4.1.2 An interlude: representations with cohomology

If R is a commutative ring, let My(R) be the set of 2 x 2 matrices with entries
in R. Consider the following modules: if & is a non-negative integer, let Ry[x,y] be
the ring of homogeneous polynomials P(x,y) in x,y of degree k with coefficients in

R. Let Ex(R) = Rg[x,y| and let Ex(R) ® det(v), for an integer v, be Ex(R) as a set.
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As an Ms(R)-module, Ey(R) ® det(v) has a (left) action given by:

a b a b a b
P (.l’, y) =P (x y) det
c d c d c d

=P(ax + cy,bx + dy) | det

If R=7,0,F or C, define the following M,(R)-module

Eii1vw(R) = (Ex(R) ® det(v)) %) (Ei(R) ® det(w))

where the overline on the second factor means the action is twisted with complex

conjugation. That is, as a module, Ej(R) ® det(w) = E;(R) ® det(w), but the action
of Ms(R) is given by:

a b a b a b
P (l’,y)—P <{]j y) det
c d c d c d
a b

= P(az + ¢y, br + dy) | det :
c d

and we define (ﬁ) to be (‘Z g)
Recall that g is the complexified Lie algebra of G¢ and K., = U(2).

Definition 1.4.2. By a (g, K )-module, we mean a complex vector space W with

actions of g and K, such that all vectors in W are K.-finite, and such that the

two actions are compatible.! A (g, Ko )-module W is called admissible if, for every

irreducible representation o4 of Ky, the multiplicity of 0 in W s finite.

Now let R = C, and put M = Ej;,.,(C). Let (p, V) be an infinite-dimensional,
irreducible, unitarisable representation of G¢. Let V(K) be the subspace of K-
finite, smooth vectors in V. Then the cohomology of G¢ is given by its (g, Ko )-
cohomology [5]:

HEA(Ge,V @ M) = Hi(g, Koo, V(IK-) @ M) for g €220 (124)

For more detail, see [3, p.140].
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Proposition 1.4.1 tells us that such a (p, V') is of the form (@ (X1, X2), B(X1, X2))
for a pair of quasi-characters (1, x2). If we further require that the restriction of
(p, V) to SLy(C) is unitary, Harder [23] has shown that there is only one (equivalence
class) of such (p, V) for which the right-hand side of (1.24) does not vanish. Indeed,
put p equal to w(||6% M, Hé n2) with the pair (n1,72) defined below.

Let ny,m9 : C* — C* be two characters which satisfy

n1(aq) :a}_”&fl_w and
na(ag) =a; ' FVay ",

1 1
Define the pair (v1,14) so that @w(vy, 1) = @(||? T, ||& 72). Then

-

1, 1
vi(ar) =a} '@, > U and

[

RS
ve(ag) =as * g Ua2 v

Note that the restriction of the representation w(vy,v5) to SLy(C) is unitary if
and only if £ = [. When this is the case, let (wy (11, 12), B(11, 2)) denote the unitary
completion of the representation of G¢ which is induced from the characters (1, vs).

We have

Cifg=1,2
H (G, B(vy, 1) %’ M) =

0 otherwise

1.4.1.3 Back to the archimedean place

Recall that the extension
1 — py — Ge — Ge — 1

splits. That is, G¢ = @@ @ po and @C >~ (G¢. If @ is an irreducible, genuine,
uniterisable representation of G¢ and if € is the non-trivial character of j, then
there are unitary characters xi, and ys of C* such that @ = w(x1, x2) ® e. We shall
only be interested in the case where w(x1, X2) = @Weo(V1, ¥2) has cohomology in the

above sense.

Definition 1.4.3. By a (g, K )-module, we mean a complex vector space W with

genuine actions of g and K, such that all vectors in W are K .-finite, and such



Chapter 1. Existence of a genuine cusp form 29

that the two actions are compatible. A (g, Ko)-module W is called admissible if, for
every irreducible genuine representation oo of Koo, the multiplicity of oo in W is

finite.

Suppose that (p, V) is a genuine, irreducible, uniterisable representation of G,
and let (p, V) be the representation of G¢ which gives rise to V: that is, V =V ®e.
Write V(K ) for the subspace of K, -finite vectors in V; let M = Ej ., .,(C) be the
representation of G¢ given above, whose extension to G is given by the value —1

on the non-trivial element of py. We have

HE(Ge, V %’ M) =HY(g,Kw,V(Kx) %) M) for q € Z=°,
It follows that
chts(a(cav % M) 7& 0= Hgts<GC7 Vv % M) 7& 0.

We shall denote by (Zu(11,12), B(v1,1)) the representation of G¢ with the
property H% (Ge, B(vi, 1) @ M) # 0 for ¢ = 1,2.
C

1.4.1.4 The nonarchimedean places

Let v be a non-archimedean place. We'll first recall the representation theory
of G,, as the theory for G, only requires slight modification. The main result is
that every irreducible ‘admissible’ (in a new sense) representation of G, is either

‘supercuspidal’; or it is equivalent to a subquotient of the principal series.
Definition 1.4.4. A representation (p, V') of G, is said to be admissible if:

o For every w € V, the stabiliser in G, of w is an open subgroup of G,, and

e For every compact open subgroup H in G, the space V! is finite-dimensional.

Recall that the group G, is a locally compact Hausdorff space. Any such group

has a translation invariant measure.

Definition 1.4.5. An irreducible representation (p,V) of G, is said to be super-

cuspidal if for every vector w in 'V there is an open compact subgroup U of N, for

which
/ p(n)w dn =0
U



Chapter 1. Existence of a genuine cusp form 30

Definition 1.4.6. An irreducible admissible representation (p, V') is said to be square-

integrable if there is a non-zero w in'V and a non-zero u in 'V such that

/ (p(g)w, w)|2|x(det g)|; dg < oo
Z’U\G’U

where { , ) denotes the canonical pairing between V' and its contragredient V, Z,

denotes the centre of G, and x is the central character of p.

We shall not make use of Definitions 1.4.5 and 1.4.6 other than in Theorem 1.4.13
below.

Suppose that (p, V) is an irreducible, admissible representation which is not su-
percuspidal. Then, by a theorem of Jacquet and Harish-Chandra [19], (p, V) is
equivalent to a subquotient of an induced representation of GG, of the following form.
Let 7 be the 1-dimensional representation of B, given by:

a; b

1
= aray |2 x1(ar)x2(az)
0 a9

for a pair (xi1,x2) of quasi-characters F,* — C*. Consider the space B(x1,x2) of

complex-valued locally constant functions f on G, which satisfy

a; b 1
f g | =laraz '3 x1(a1)x2(a2) f(g) and (1.25)
a2
/ FRR dk <oo (1.26)

The group G, acts on these functions via (fg)(h) = f(gh) and hence B(x1, X2)
is the space of a representation of G, induced from that of 7 which we denote by
(p(x15 x2), B(x1, X2))-

The following result [24] of Jacquet-Langlands tells us when the representations

(p(x1, X2), B(x1, x2)) are irreducible and uniterisable.

Theorem 1.4.3. 1. p(x1, X2) is irreducible if x1(a1)xy (a2) # |aias|*.

2. If x1(a1)xs Haz) = laras|;t, then p(x1,X2) has a unique irreducible subrep-

resentation w,(x1, X2) which is 1-dimensional. The corresponding quotient is

irreducible, square-integrable and denoted by o,(x1, X2)-
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3. If x1(a1)xs H(a) = |ayas|y, then p(x1, x2) also has a unique irreducible subrep-
resentation which we denote by o,(x1, X2) which is always infinite-dimensional.

The corresponding 1-dimensional quotient is denoted w,(x1, x2)-
4. The representations in (1) are uniterisable if either:

e Both characters x1 and xo are unitary. These are called the continuous

series. Or,

e xi(a1) = x5 (az) and x1(a1)xy  (az) = |aras|® with 0 < o < 1 . This gives

the complementary series.
The representations in (2) and (3) are uniterisable iff x1x2 is unitary.

5. wy(x1, X2) 18 equivalent to w, (X}, X5) iff either (x1, x2) = (X}, X5) or (x1, x2) =
(X% X1)-

When the representations p(xi,x2) are irreducible, we shall denote them by
wy(X1, X2) and refer to them as representations of the principal series. The irre-

ducible subquotients that we have denoted by o,(x1, x2) are called special represen-

tations.

We shall also need the following;:

Definition 1.4.7. An irreducible, admissible representation (p, V') is said to be level
1, or unramified, if it contains a K,-invariant non-zero vector. Or, equivalently, if

it contains the identity representation of K, at least once.
We can extend this notion of ‘level” in the following way [19].

Theorem 1.4.4. Let (p,V') denote any irreducible admissible representation of G.,,.
Then there is a largest subgroup L, of K, such that the space of vectors v with

p(l)(v) =v foralll € L,
18 not trivial. Furthermore, this space has dimension one.

We shall call a quasi-character x : F, — C* unramified if it is trivial on O;. We

shall require the following [19].
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Theorem 1.4.5. An irreducible admissible representation (p,V') of G, is level 1 if
and only if p = w(x1, x2) for some pair of unramified characters x1,x2 of F., and
p s not a special representation. In this case, the identity representation of K, is

contained exactly once in (p, V).

To conclude our discussion of the irreducible, admissible, uniterisable representa-
tions of (G, it remains to observe that the irreducible supercuspidal representations
with unitary central character are uniterisable. We shall say no more than they do
exist, and can be constructed using the ‘Weil’ representation [19].

Consider the group G,.
Definition 1.4.8. A representation (p,V) of G, is said to be admissible if:
o For every w € V, the stabiliser in G, of w is an open subgroup of G, and

e For every compact open subgroup H in G, the space of vectors stabilized by H

1s finite dimensional.

Definition 1.4.9. An irreducible representation (p,V) of G, is said to be super-
cuspidal if for every vector w in V there is an open compact subgroup U of Nv for

which
/ p(n)wdn =0
U
Note that this makes sense because the extension defining G, always splits uniquely

over N,.

It turns out [17] that every irreducible, genuine, admissible, non-supercuspidal
representation of G,, is equivalent to a subquotient of an induced representation. We
turn to the description of the induced representation.

Suppose that we have a genuine irreducible 1-dimensional representation 7y of
the group Ti. By Remark 1.1.2, the group Ti is abelian, and by Corollary 1.1.6, it
lifts to a subgroup T 2 in G,. Thus, 7 is a pair of quasi-characters (1, x2) of FX2.
Extend 7y to a maximal abelian (finite index) subgroup TS of T\, and then extend
it again to the group TS]/\\C, by the value 1 on ]VU. Write 7 for the representation 7

induced to B,. Note that the dimension of 7 is 4 when v is odd, and 16 otherwise.
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Consider the space B(x1, x2) of complex-valued locally constant functions on the

group G, which satisfy:

a; b ap b P
f 75 g :fT 7]- |CL16L2 |3f(g)
0 as 0 a2
ay b — —
for all €9 €B,, and all g € G, and
0 a9

| 15w i < oc

The group G, acts on this space via right translation; we write (p(x1, x2), B(x1, X2)),
or Ind % (X1, x2), for the induced representation of G,,.

See [20, p. 115] for the next result.
1
Theorem 1.4.6. 1. p(x1, x2) is irreducible if x1(a1)xy (az) # |a1a2|vi2.

1
2. If x1(a1) x5 *(az2) = |ajas|y *, then p(x1, x2) has a unique irreducible subrepre-

sentation denoted T,(x1, X2);

1
3. If xa(a1)xg ' (ag) = |araz|e, then p(xi1, x2) has a unique irreducible subrepre-

sentation which we denote by @,(x1, X2);
4. The representations in (1) are uniterisable if either:
e Both characters x1 and xo are unitary (these are called the continuous
series), or
o yi(ay) = E(ag) and x1(a1)x3 ' (az) = |a1as|S with 0 < a < L (this gives

the complementary series).

The representations in (2) and (3) are uniterisable iff x1x2 is unitary.

5. Ty(x1, X2) 18 equivalent to T, (X7, xb) iff either (x1, x2) = (X4, Xb) or (x1, x2) =
(X% X1)-

When the representations p(x1,x2) are irreducible, we shall denote them by
(X1, X2) and refer to them as representations of the principal series. The rep-

resentation we have denoted by @, (1, x2) is called special.
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Definition 1.4.10. If v is an odd place, an irreducible, admaissible representation

(p, V) of Gy is said to be level 1, or unramified, if it contains the representation

{k. &= ¢

of K, at least once, or equivalently, if v # 0.
An irreducible, admissible representation (p,V) of G is said to be level 1 if it

contains the representation
{k, &} — ¢

of K(4) at least once.
In analogy with Theorem 1.4.5, we have [18]:

Theorem 1.4.7. An irreducible, admissible representation (p,V) of G, is unram-
ified if and only if it is of the form ,(x1, x2) with X? and x3 unramified and
x1(a1)xy (az) # |avas|2: that is, it is not special. In this case, it contains the

identity representation of K, exactly once.

The representation theory of G, is concluded by noting that the supercuspidal
representations again exist, but since we have no use for them in this thesis, we

simply remark that they are associated to the ‘Weil’ representation [20].

1.4.2 Global representation theory

The global theory is built from the local theory as we shall see below. This section
is based on [3] and [20].
Recall the definition (1.4.2) of a (g, K« )-module.

Definition 1.4.11. A (g, K«) x G(Ay)-module (p, H) is a (g, Ko )-module with a
‘smooth’ action of G(Ayf). The action of G(Ay) is smooth if every vector x € H is
fized by some compact open subgroup Ly C G(Ay).

The point of this definition is that, for a fixed quasi-character ¢ : A*/F* — C*,

the space Ag(¢) of cuspidal automorphic forms is a (g, K ) X G(Af)-module .

Definition 1.4.12. A (g, Kw) X G(Af)-module (p, H) is called admissible, if, for

every irreducible representation o of Ko X Ky, the multiplicity of o in H is finite.
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In this subsection, we shall use the notation (p,, H,) for an irreducible, admissible

representation of G,,.

Theorem 1.4.8. i. Suppose that (peo, Hs) is an irreducible admissible (g, Koo) X
G(Ay)-module, and suppose for that for each finite place v, (p,, Hy) is an irre-
ducible admissible representation of G,. Suppose, moreover, that for almost all
finite places, the representation is unramified and a basis vector z° € HEv is

v

given. Then the restricted tensor product

H = H,

v

0

with respect to the vectors x,

is an irreducble admissible (g, Koo ) X G(Af)-module.

. Conversely, if (p, H) is an irreducible admissible (g, K«) X G(Af)-module, then

there is a collection {(p,, H,)} as in (i) and an isomorphism
® H, — H
of (8, Ko) X G(Af)-modules.

It is customary to write p =® p, for the pair (p, H). Let us make precise the
meaning of the restricted tensor Uproduct ®" H,. Let S be the finite set of places,
including oo, for which (p,, H,) is not unr;miﬁed. If v ¢S, choose a K,-fixed unit
vector, r0. For every finite set S’ D S, let

Hy =® H,

veS’!

If " O &', define the embedding Hgr — Hgr by z — 2 ® & 29, Taking the
veS\ S’
direct limit, we obtain a Hilbert space H = ®" H, = hgq Hg.
Consider again the (g, Ko ) x G(Af)-module Ay(1)) of cuspidal automorphic forms,

whose central character ¢ is fixed. The following theorem is of central importance.

Theorem 1.4.9. 1. The space Ayg(¥) is a direct sum of irreducible admissible (g, K )X
G(Ayf)-modules,

Ao(v) =EB Ao(¥, p),

where Ao(, p) is a summand isomorphic to p.
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Motivated by this, we make the following definition:

Definition 1.4.13. A cuspidal automorphic representation of G is an irreducible

admissible (g, K») X G(Ay)-module which is equivalent to a module p which occurs

We want the (g, K. )-module p,, to have cohomology in the sense of Section

1.4.1.2, and for this we make the following definition:

Definition 1.4.14. A cuspidal automorphic representation of G of cohomological
type is an irreducible admissible (g, K« ) X G(Ay)-module which occurs in Ao(¢) and

whose component po, at infinity is equivalent to wy (1, V2).

Remark 1.4.1. Recall that a function ® € Ay(v) is fixed by some compact open sub-
group Ly C G(Ay). We'll refer to Ly as the level of the representation p generated
by ®. This is compatible with the notion of ‘level’ that we used for local represen-
tations; if Ly = [[ L, then the level of the local component p, is L,. In particular,

<00

we'll say that the representation p is level 1 if Ly = K.

There are analogous versions of Theorems 1.4.8 and 1.4.9 for the metaplectic
group G,. To state them, we need the relevant notions from the representation
theory of G,.

Recall the definition (1.4.3) of a (g, K )-module.

Definition 1.4.15. 4. A (g, Ko) x G(As)-module H is a (g, K)-module with a
genuine, ‘smooth’ action of G(A;). The action of G(Ay) is smooth if every

vector v € H is fired by some compact open subgroup Zf C 5(Af);

ii. A (g, Ks) x G(Ay)-module (p, H) is called admissible, if, for every irreducible

representation o of K o X IA(}, the multiplicity of o in H is finite.

Again, we write (p,, H,) for an irreducible, admissible representation of G.,.

Theorem 1.4.10. i. Suppose that (peo, Ho) s an irreducible admissible (g, K «) X

G(Ay)-module, and suppose that for each finite place v, (p,, H,) is an irreducible

admissible representation of G,,. Suppose, moreover, that for almost all finite
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. . . —RK, . .
places, the representation is unramified and a basis vector 20 € H, " is given.

Then the restricted tensor product

H =g H,
with respect to the vectors ¥ is an irreducble admissible (g, K o) x G (A f)-module.

ii. Conversely, if (p, H) is an irreducible admissible (g, K ) X G(As)-module, then

there is a collection {(p,, H,)} as in (i) and an isomorphism

® H,— H

of (9, Koo) x G(Af)-modules.

We shall write p for the pair (p, H). To make sense of a product of local genuine
representations of G,, it will be necessary to view these representations as projective
representations of G,. Let H denote a Hilbert space and U(#) the unitary operators
in H. A projective representation of GG, is a measurable map ¢ : G, — U(H)/C*.
Any such map can be lifted to a map ¢' : G, — U(H), but not uniquely. In fact, the

‘representation’ ¢’ will have the properties:
1. ¢(1) =1
2. ¢(91)9'(92) = 0u(g1, 92) ¢ (9192)

for all ¢1,92 € G,. Here, 0, is a function from G, x G, to C* which (by the
associative law in G,) is a 2-cocycle. We call ¢’ a 0,—representation, or a multiplier-
representation of (G,; each such representation arises from a projective representation
as above.

Let (p,, H,) be a genuine representation of G,, in which multiplication is defined
by the cocycle f3,, and consider the section s : G, — G, , g — (g,1). Define
ph :=p, o s. Then [20]:

Lemma 1.4.11. There is a bijective correspondence between genuine representations
(Py, Hy) of G, and j3,-representations given by p, — pl, = p, o s, and this correspon-

dence preserves direct sums and unitary equivalence.
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Suppose that for each v, (p,, H,) is an irreducible, admissible, genuine represen-
tation of G, and that for almost every v, (p,, H,) is unramified. Let {(7,, H,)} be
the collection of [§,-representations that they determine, and form the tensor prod-
ucts (¢, H') = (& pl,®’ ﬁ;) as above. Then (p’, H') is an irreducible, admissible
ﬁA—representatiorf of G Av, which determines a genuine representation of Gj.

Fix a genuine quasi-character ¢ : Z(G,)/(Z(G4) N Gp) — C*. Recall the space
Ay(1)) of genuine cuspidal automorphic forms. It is a (g, K ) x G(A)-module, and

we have the following important result:

Theorem 1.4.12. 1. The space Ay(v) is a direct sum of irreducible genuine admis-

sible (g, K o) X G(Ay)-modules,

Ao (1) =€B Ao(, p),

where Ay(1, p) is a summand isomorphic to p.
Motivated by this, we make the following definition:

Definition 1.4.16. A cuspidal genuine automorphic representation of Gy is an ir-
reducible admissible (g, K «) x G(A;)-module which is equivalent to a module p which

occurs in Ay(1)).

We want the (g, Ko) x G(A)-module p., to have cohomology in the sense of
Section 1.4.1.3, hence:

Definition 1.4.17. A genuine cuspidal automorphic representation of G of coho-
mological type is an irreducible admissible (g, Koo) X G(A)-module which occurs in

Ao(¥) and whose component ps at infinity is equivalent to T (v1, v2).

Recall that a function ® € Ay(v) is fixed by some subgroup Zf c K b Asin
Remark 1.4.1, we shall call Ef the level of the representation p generated by &.

Again, this is compatible with the local notion of level, and we shall say that p is

level one if Ef = [?}
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1.4.3 The correspondence
Flicker has defined a correspondence, which we’ll call .S:

Irreducible, admissible, genuine Irreducible, admissible
representations of G representations of G

The global correspondence S can be thought of as a product of local correspon-

dences, each defined S,:

Irreducible, admissible, genuine Irreducible, admissible

representations of G, representations of G,

Suppose (p,, H,) is an irreducible, admissible, genuine representation of the local

group G,, with central character y. Then

Su(p,) is a representation of G, with central character y/,

where x'(2) := x(2?) for z € Ff

This holds at all places v of F.

In Section 1.4.1, we saw that there are four types of irreducible admissible, genuine
representations of G,: the principal series representations, special representations,
one-dimensional representations and the supercuspidal representations.

In particular, if 7, (x1, x2) is a genuine irreducible principal series representation
of G, whose characters x, 2 are unramified, recall that the central character is

given by x = x1x2. Then,

Su(@u(X1, X2)) = @u(X1, Xa) Where X'(2) := X1x5(2) = x(2%) = xax2(2?) for 2z € ),

and w, (X}, x4) is the principal series representation of G, whose central character
is . In other words, the image of a principal series representation under S, is a

principal series representation.
Remark 1.4.2. If (p,(X), H,) is in the image of S,, then X’ is even since x/'(—1) =

X((=1)%) = L.

Theorem 1.4.13 (The local correspondence). Fvery irreducible, admissible, gen-

wine representation of G, corresponds to an irreducible, admissible representation of
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G,. All supercuspidal representations whose central character is even are obtained
by the correspondence from supercuspidal representations of G,. Any even special
representation o,(x') is obtained from the square-integrable subquotient G,(x) of the
induced representation p,(x), hence any even 1-dimensional representation w,(x’) is
obtained from the quotient To,(x) of p,(x) by 7,(x). Any odd special representation

1s obtained from a supercuspidal representation.

The proof of Theorem 1.4.13, as well as Corollary 1.4.14 and Theorem 1.4.15

below, can be found in Flicker [17].

Corollary 1.4.14. For all places v, the correspondence S, is one-to-one, and takes
level 1 representations to level 1 representations and square-integrable to square-
integrable representations. There are supercuspidal representations which correspond

to (odd) special representations (which are not supercuspidal).

Remark 1.4.3. We identified in Subsection 1.4.1.3 that the only representation of
G¢ whose restriction to SLy(C) is unitary and which has cohomology is the genuine
continuous series representation we denoted by T (v4,12). It turns out that its
image under S,, does not have cohomology. To see this, write @y (k, 1, v, w) for
Teo(V1,v2). Then S, takes T (k, 1, v, w) to wuo(1 + 2k, 1 + 21, —% + 2v, —% + 2w).
But @ (14 2k, 1+ 21, —% +2v, —3 + 2w) has no cohomology since, if v, w € Z, then
—1+20, -3+ 2w ¢ Z

Definition 1.4.18. The correspondence S takes (p = ®Uﬁv,ﬁ = ®Uﬁv) to the
constituent (p = Qy,py, H = @,H,) if (py, H,) corresponds to (p,, H,) for all v.

Thus we can formulate the global correspondence.

Theorem 1.4.15 (The global correspondence). Every irreducible, admissible gen-
wine representation (p, H) of Gy corresponds to an irreducible, admissible repre-
sentation (p, H) of Gu. The correspondence is one-to-one and its image consists
of all p = ®yupy, such that p, has even central character for all v and such that if
pv = (X1, Xb) then both X' and X!, are even. Moreover, the pre-image of a cuspidal

automorphic representation is cuspidal.
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It follows from Remark 1.4.3 that if p is an irreducible, genuine, automorphic
cuspidal representation of cohomological type, then its image under S will not be of
cohomological type.

We’d like to modify S so that it takes representations of cohomological type
to representations which are still of cohomological type. To this end, consider the

correspondence S given locally by

~ 1

Su(p) = 5u(p) @ |det|d (1.27)
where ‘det’ is the 1-dimensional representation of G, which takes g to det(g) € F*.

~ 1 J— R
Definition 1.4.19. The correspondence S = S®|det |} takes (p = Q@upy, H = @,H,)
to the constituent (p = Qupy, H = @,H,) if (py, H,) corresponds to (p,, H,) for all

V.
We claim

Proposition 1.4.16. If g(ﬁ, H) is an irreducible, admissible, cuspidal representa-

tion of Gy of cohomological type, then (p, H) is an irreducible, admissible, genuine,

cuspidal representation of G of cohomological type.

Proof. We must show that the §—pre—image of a cuspidal automorphic represen-
tation is a cuspidal automorphic representation. By Theorem 1.4.15, this is true for
1
S; thus it will suffice to show that tensoring with |det|} preserves this condition.

Suppose V' is a subspace of cusp forms isomorphic to a representation p. Put

W ={1(g) ldet(g)]} : feV}.

Then it is trivial to check that W is a space of cusp forms, and is isomorphic to
p® |det|?.

To check that the S -pre-image of a representation with cohomology still has coho-
mology, we only need to check the pre-image under the local component Ss. Recall
from Remark 1.4.3 that @ (v, 1) is denoted by @oo(k, [, v, w). A straightforward
computation shows that S (Teo(k, [, v, w)) = @eo (1 + 2k, 1+ 21, —1 + 20, —1 + 2w).

Thus, if £/,I'’ > 1 are odd integers, and if v/, w’ € Z are odd, then the pre-image

K1 U'—1 v/+1 w/+1 K1 1'-1
5 5 5, 45 ), and f=, 5= are non-

of weo(k',',v"w') is of the form T ( 5

v/ 4+1 w41 :
5, 5 are integers.

negative integers, while
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Remark 1.4.4. When wy(k,l,v,w) (resp. Weo(k,l,v,w)) is the infinite component
of an automorphic cuspidal representation p (resp. p) of Gy (resp. Gj), we shall

refer to the pair (k,l) as the weight of p (resp. p).

Observe that S, preserves the unitarity of @ (k,[,v,w) when restricted to

SLy(C). Indeed, if k = [ then 1 + 2k = 1 + 2I. Furthermore, twisting by the

1
character g — |det(g)|¢ does not change the level of the representation: suppose
1

that [ € L, C K, for some v. Then |det(l)|# = 1 because det(l) € OF. It follows
that

1\ Lo
plv 40 < (pv ® |det|3> # 0.
That is, the level of S(p) agrees with that of S(p).

Finally, the conclusion we wish to draw:

Corollary 1.4.17. For all non-negative integers k,
qusp(SIQ(O)’ E2k+1,2k+1(c>) 7é 0= H?usp<rl7 Kq % Ek7k<c>) 7é 0.

Proof. Suppose
HZ\ o (SL2(0O), Egpi1,2141(C)) # 0
for some non-negative integer k. By the generalised Eichler-Shimura-Harder isomor-
phism (0.6), there is a cuspidal automorphic representation w of SLy(A) of level 1
(see Remark 1.4.1), whose infinite component is equivalent to w..(2k+1,2k+1, v, w)
for some odd integers v, w. Since w is of level 1, its local constituents w, are of level
1, and by Theorem 1.4.5, they are principal series representations with an associ-
ated pair of unramified characters. An unramified character is even, therefore the
representations are even. Thus by Theorem 1.4.15, w is in the image of S.

Let @ be the g—pre-image of @w. By Proposition 1.4.16, @ is a genuine cuspidal
automorphic representation of SLy(A) of cohomological type. We shall determine
the level of .

At each odd, finite prime, the local constituent 77, is unramified, and therefore

of level 1. We claim that at the even prime 7,
T £ 0.

We calculate this space in Section 3.4, and we show that it is non-zero. Thus % is

of level 1 (see the paragraph immediately after Definition 1.4.17).
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By the last paragraph of the proof of Proposition 1.4.16, the infinite component

oo Of T is equivalent to e (k, k, ”gl, wT“) Therefore, by the metaplectic gener-

alised Eichler-Shimura-Harder isomorphism (0.9),
ngsp(rla a70) % Ek,k(c>) 7£ 07

and the Corollary is proved. O
By invoking Corollary 1.5 of [13, p. 4], we see that for large k,

ngsp(SLQ(o)7 E2k+1,2k;+1 (C)) 7& 0.
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Second cohomology

There is a natural action (0.3) of SLy(O) on H. One method for calculating
the cohomology of SLy(0) or a finite index subgroup T C SLy(0) is to build it
from the cohomology of T\H: there is a spectral sequence relating H*(YT\H, —) to
H*(T,—). The space T\H, however, is not optimal: not only is it not compact, but
the dimension of Hl is strictly larger than the groups’ virtual cohomological dimension,
which is 2. In 1980, Mendoza [30] produced a smaller space D C H of dimension
2, called a “spine”, on which the group still acts properly, and such that Y\D is
compact. Moreover, there is a deformation retract YT\H — YT\ D which verifies the
isomorphism

H*(Y\H, W) = H*(T\D, W)

for all T-modules W associated to the local system W.

The principal conclusion of Chapter 1 was that

cusp

H? (I kg ® Ejx(C)) # 0 for some k > 0;
C

indeed, finding a non-trivial cohomology class amounts to finding a non-trivial gen-
uine automorphic cuspidal representation of SLy(A). In this chapter, we shall show
that there is a non-trivial cohomology class when k = 2. Our main result (Proposi-

tion 2.4.1) is that

diHlC }{2

cusp

(T, Ind [+ (kg) ® E,5(C)) > 8. (2.1)

Expression (2.1) says that there is a non-trivial genuine cusp form of level one and

weight (2,2).
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In Section 2.1, we shall recall the spectral sequence used to calculate the coho-
mology of T and define the subset D and Y\D in the case that T = SLy(0). In
Section 2.2, we shall utilise D to exhibit the cohomology of SLy(O) and some of its
congruence subgroups. In particular, we give the Q-dimensions of H?*(Ty(a), Q) and

H?*(T'1(a),Q) for some non-zero ideals a C O, and we show (Proposition 2.2.2) that
AT, 1g) = QO (2.2

Section 2.3 is concerned with torsion in the integral second cohomology of S Ly(0)
and IV. We compute
H*(SLy(0),7) 2 7/27. & 7./ 27,

and we calculate H*(I"”, xz) up to extension: Proposition 2.3.5 says that there is an

exact sequence
0— Z® — HXT, kz) — (Z/2)) @ (2/4)"9 @ (2/12) — 0.

In the last section, 2.4, as well as our main result Proposition 2.4.1 mentioned
above, we show that when a = (1 + 2i),(1 + 44) or (3 + 2i), the cohomology
H?*(To(a),Q) is entirely Eisenstein: that is, HZ, (Fo(a),Q) = 0 for these ideals

a. Moreover, we show that (2.2) is Eisenstein: we prove, both algebraically and

geometrically, that

H? (T kg) = 0.

cusp

Notation shall be described below.

2.1 The tools

Suppose that T is a group which acts cellularly (on the left) on a contractible
CW-complex X of finite dimension. For each cell § of X, let Ts be the stabilizer
subgroup Y5 = {y € T | v = 0} and let X, be a set of representatives for the
T-orbits of p-cells of X. Then there is a natural equivariant spectral sequence:

EPI(M) =€ HY(Ys, M) = H""(Y, M) (2.3)

SEX,
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for any T-module M. For the derivation of this sequence, see [7] or (for a homological

version) [34].
Fix, once and for all, the notation I' = SLy(0). We call a subset D C H a spine

for I' if it is a I'-equivariant deformation retract of H of dimension 2.
Theorem 2.1.1. There exists a spine D for I with the following properties:
o D is naturally endowed with the structure of a locally finite reqular CW-complex;

e The action of I' on D s cellular,

e The quotient I'\D is a finite CW-complex.
A more general version of Theorem 2.1.1 can be found in [40]. See also [34].

Definition 2.1.1. A finite subcomplex D' C D is called a fundamental cellular
domain for I' if D = I'D’ and if points in open 2-cells are not I'-equivalent. If
we denote by “~7 the cellular equivalence relation on D' induced by identification of
0 or 1-cells under ', then it follows that ~ \D' and I'\D are isomorphic as CW-

complexes.

The following picture shows the fundamental cellular domain ~ \ D’ for I' in H,

as seen from (0, 0o):

Pii= (3.4 Pri= (3459
P1 = (0,1) P2 = (%7?)

The domain ~ \ D' is contained in the unit hemisphere {(z,7) € H : |z]*+r? = 1}
centred at the origin of H. The 4 vertices (shown on the diagram as dots) are the
0-cells, the 4 lines are the 1-cells and the single face is a 2-cell. We can apply the
spectral sequence (2.3) to the pair X =~ \D',T =T. Let
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Let I'; denote the stabilizer of the 0-cell P;, and I';; the stabilizer of the edge P;P;.
Then:

INo=<a>=0Cy; ' =<a,b>= Qs
[o3 =< ce® >= Cy [y =< a,ce® >= Q1
'3y =<c¢>=C; I's =<c,de >= Ty
Iy =<b>=0C4; I'y=<b,c>= Q1

where C) is the cyclic group of order I, Qs = { z,y | 2* = 1,22 = ¢}y oy =
Y = {xyz| 2=y =22=xyz = —1) is the group of Quaternions
of order 8, )15 is part of the family of the generalised Quaternion groups Qu =
(x,y | 2®* =yt =1,2%5 =y y Loy = 271) of order 4k, where k is an integer > 2,
and Thy = ( r,s,t | r? = s* =3 = rst) is the binary tetrahedral group of order 24.

We shall only prove that I'y =< b, ¢ >= Q)1o; the proof exhibits the salient fea-

tures of the rest of the calculations of stabilizer subgroups.

Proof of I'y =< b, c >= ng.

We shall use the identification (0.2) to think of points (z,7) € H as elements
q=z+rj €. Accordingly, let P = % + \/ng‘ Note that if w = x 4 iy is a complex
number, and w = x — 1y denotes its conjugate, then we have the identity:

Pw = @P + %(w — ). (2.4)

Recall the action (0.3) of I on $). Suppose that (¢ %) is in I'y. Then,

a b
c d

P=P<

aP +b=P(cP +d)

? ?

=P+ 5(c=e)P+ dP + 5(d— d) by (2.4)

:(%(C —¢)+d)P+ (%(d — J) — ¢) since P?=—1.
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Hence, a = (c—¢)+d and b= (d—d) — . Let N : F — Q denote the norm map
N(w) = ww. We have

1 :ad—bc:(%(c—é)+d)d— (%(d—d) o)
%<<c —2)d — (d — d)c) + N(c) + N(d)
%(cd—cd) + N(c) + N(d).

Since i(dé — cd) = N(c+id) — N(c) — N(d), we can write %(cd — cd) = 1(N(c) +
N(d) — N(c+id)), hence

1 :%(N(c) + N(d) = N(c+ id)) + N(c) + N(d)
:%(3]\7(0) +3N(d) — N(c + id)) <

2 =3N(c) +3N(d) — N(c+id).

The three possible solutions for N(c), N(d), N(c + id) are therefore

N(c)=0,N(d) =1,N(c+1id) =1, or
N(c)=1,N(d) =0,N(c+1id) =1, or
N(e) = 1,N(d) = 1, N(c + id) = 4.

Let ¢ = w4+ iz and d = y + iz for w,x,y, 2 € Z.

3N(c) +3N(d) — N(c +id) =3w® + 32° + 3y* + 32* — (c + id)(¢ — id)

=3w? + 32+ 3y* + 32> — (w — 2)* + (z + v)?)

=3w? + 32% + 3y* + 327 — (w® — 2wz + 2* + 2% + 20y +37) &

2 =2(w® + 2 + y* + 2°) + 2(2w — zY)
2 =2(w® + zw + 2%) + 2(2? — 2y + y?).

We can write this as two quadratic forms: one in x,y and one in w, z. Writing

both in matrix form and row reducing:

2 1 2 1 2 0
— — ,
1 2 0 3 0 2
2 -1 2 —1 2 0
— — ,

I
—_
N}
)

N
e}
oo
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we see that both forms are positive definite. That is,
1= (w?+ 2w+ 2%) + (2° — 2y + 37)
and both w? + 2w + 2% and 2? — 2y + y? are non-negative. This implies that, either
1. w4+ 2w+ 22=1landz =y =0, or
2. 22 —ay+y*=1land w=2z=0.

If case (1), then (w + $2)® + 22 = 150 |2| < 1 and z € Z means that z = 0,1 or

—1. In fact,

z2=0=w==%£l,
z=1=w=0o0r —1,

z=—-1=w=0or1.

Similarly, if case (2), then (z — 1y)? + 3y?> = 1 so |2| < 1 and € Z means that

x=0,1or —1. We have

r=0=y = =1,
r=1=y=0orl,

r=—-1=y=0o0r —1.

Hence I'y consists of the following 12 matrices:

0 —1 0 1 i -1 —i o\ (i 1 i 0 10
1 o/ \=1 0/ \o i) \=1 i) \o =) \1 =) \o 1)
-1 0 -1 1 0 2 1 — 0 —2
o -1/ \i of \i 1) \=i o) \=i -1
Put
0 —1 0 =2
b= ,C=
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Then, b = b* =1, and

b~leb =
-1 0 r 1 1 0

K 1 0 —1
N 0 — 1 0
B 1 —3

N - 0

=c 1.

Therefore, I'y = Q12 = ( b, ¢) . O

The stabilizer subgroups are also calculated in [34] for the action of PSLy(0) =
SLy(0)/{£1} on H. In this case, the fundamental cellular domain ~ \D’ is the
same, but the stabilizer subgroups are half as big: they are the quotient of ours by
the group {£1}.

For later use, we shall collect some information about the stabilizer groups.

We can view Qg as two distinct extensions:

1—>02—)Q8—>CQXCQ—>1

1—Cy— Qs — Cy — 1

The first is central, and in the second, the quotient Cy acts on the kernel Cy = ( x)
by the automorphism z + z=1. There are several ways to view Q5. We can write

it, as below, as 3 distinct extensions. The first is split and the others are non-split:

1 —0C3 — Q1o —Cy — 1
1—>CQ—>Q12—>D6—>1

1—>06—>Q12—>02—>1

The group Dg = ( z,y | 23 = y* = 1,yzy = 1) is the Dihedral group of order 6.
In the first and third extension, the quotient acts on the kernel by the non-trivial
automorphism, that is, by sending the generator of the kernel to its inverse. The

second extension is central, so Dg acts trivially on Cs. The group T4 can be written
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as 2 extensions:

1—>02—>T24—>A4—>1

1—>Q8—>T24—>03—>1

where Ay = ( z,y | 23 = y*> = (zy)® = 1) is the alternating group of order 12. The
first extension is non-split and central, and the second is non-central and split. The
quotient C5 acts on (Jg by rotating the 3 generators of order 4.

Returning to the fundamental cellular domain ~ \D’, we see that the stabilizer

of the only 2-cell is {£1} = C5. In pictorial form, the stabilizers are

<c>=(Ch

<b,C>: Q12 <C,d,€ >= Ty

<b>=0C, < ce? >= Cy

< a,b>= Qg < a,ce® >= Qs
<a>=C0Cy

The spectral sequence (2.3) simplifies if M is a I'-module over Z[%]. In this
case, since the primes above 2 and 3 are inverted, the cohomology of the (finite)
stabilizers vanish in degree greater than 0. Hence we have EY(M) = 0 for all ¢ > 0.
Therefore the spectral sequence is concentrated on the horizontal axis ¢ = 0 and the

cohomology of the cochain complex

o) s B0 L BO() (25)
gives H*(I', M'). That is,
HO(, M) = Ker(dY"), HY(T', M) = Ker(d;*)/Im(d)"), H*T, M) = M&F /Im(d}°).
With the appropriate substitutions, (2.5) reads

& HO(Fi,M)ﬁ 5 HO(FZ-j,M)ﬂHO({iId},M) (2.6)

0—cell P; 1—cell P;;

MF1 D MF2 o) MF3 D MF4 ﬁ MF12 D MF23 D MF34 D MF41 ﬂ MiId



Chapter 2. Second cohomology 52

To determine H?, clearly it remains to describe the differential d}’o. In fact, since
the boundary of the 2-cell in the fundamental cellular domain ~ \D’ is the sum
of the I-cells each counted once, d;* is simply the map d,°((my, mg, ms, my)) =
my1 + ms + ms + my. If we make the assumption that —1 acts trivially on M then

H? is described by
H*(D,M) = M/(M"> + M"™ + M"* + M) (2.7)

If, on the other hand, 6 is not invertible in M - for example, if M = Z - then, in

order to calculate in the spectral sequence (2.3), we shall need the following Lemma.

Lemma 2.1.2. The integral cohomology of the finite groups C, (n > 0), Qs, Q12, T4
18 given, respectively, by:

7 q=20

HY(Cn,Z) =50 q odd

Z/nZ q even ,q >0

4

Y/ q=0
0 q=1(mod 4)
HYQs,Z) =\ 222 & Z)2Z q =2 (mod 4)

0 q =3 (mod 4)

7./87 q=0 (mod4),q>0
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HYQ2,Z) = { ZJAZ  q =2 (mod 4)

ZJ12Z q=0 (mod4),q >0
\
)

) q=20
0 q=1(mod4)
HYT5,Z) = S Z/3Z ¢ =2 (mod 4)

0 q =3 (mod 4)

Z2/247 q=0(mod4),q>0
\

Proof. First, note that if § = R® Ri ®Rj @ Rk is the Hamiltonian quaternion
algebra, and if G is a subgroup of the multiplicative group $*, then it is well known [7]
that G has periodic cohomology of period 4. This applies to G = C,,, Qg, Q12 and

Ts4. Moreover, for such G,
HYG,7) = 7/|G|Z, and H*Y(G,Z) = 0. (2.8)

Consider the cohomology of Q)g. It suffices to prove that
(
7 q=20
0 q=1
HYQs,Z) = 222 ® Z/2Z q =2

0 q=3

kZ/SZ g=4

Consider the Hochschild-Serre spectral sequence related to the group extension
given above,

1—Cy — Qs — Cy — 1,
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in which C5 acts on Cy non-trivially. Indeed,
Ey? = HP(Cy, HY(Cy, 7)) = H"(Qs, Z) (2.9)

To list the terms on the Fj sheet, we must calculate the structure of H'(Cy,7Z) as
a Cy-module. With the operation of cup product, H (Cy,Z) = Zlz]/ < 4z > is
a ring [38], where deg(x) = 2 and the action of Cy on z is # — —z. Hence, in

H?(C4,7Z), under the action of Cy,

r+—— —X
20— 2x
— T

4o — 4x

This shows that H?(Cy, Z)“? 2 Z,/27. In degree 4, Cy sends x? to 22, and hence we
have H*(Cy,7Z)¢? = Z/4Z. Tt is not hard to show that

H*Y(Cy, Z/AZ) = 7./27 and
H(Cy, ZJAZ) = 7.)27.

The first 5 rows and 5 columns of the Es sheet of the spectral sequence read:

7/A7  7)27  ZJ27  7)27 )27

0 0 0 0 0

7)27| 727 |7)2Z| 7)2Z  7)2Z

0 0 0 0 0

0 7.)27, 0 Z7.)27.

p

The boxed terms are stable. Since we know (by (2.8)) that H*(Qs,Z) = 0,
Ey” must vanish. So there must be an injective map E;” — Fy° which is also an
isomorphism. We know (again, by (2.8)) that H*(Qs, Z) = Z /87, hence Ey* = Z/47

must be stable from the Fj sheet onwards, so the map ES* — Ei? = 7/27 must be
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trivial. Given that H®(Qs,Z) = 0, this forces the map Ey? — Eo” = Z/27 to be an
isomorphism.

The terms we are interested in stabilize at the Ej sheet, which takes the form:

q
7./A7 0
0 0 0
7.)27 0 7.)27 0
0 0 0 0 0
7 0 7.)27 0 0

p

Therefore, H*(Qs,Z) = 7, H*(Qs,Z) = 7Z/87 and H?*(Qg,Z) occurs in an exact
sequence

0 — Z/27 — H*(Qg,Z) — 7./27 — 0.

Observe that H*(Cy,Z/27Z) = 7./27Z. This means that H?*(Qs,Z) is either Z /27 &
Z /27 (the split extension), or Z/4Z (the non-split extension). To determine which,

consider the short exact sequence of abelian groups:
0 —2Z—>Q—Q/Z—0,
and the associated long exact sequence in group cohomology:

o= H'(Qs,2) — H'(Qs,Q) — H'(Qs,Q/Z) — H*(Qs,Z) — H*(Qs,Q)
— H*(Qs,Q/Z) — -+

Since Q is torsion-free, H'(Qg, Q) = H?*(Qs,Q) = 0, so we have an isomorphism
H?*(Qs,Z) =2 HY(Qs,Q/Z). Let [Qs,Qs] = {ryz~'y™' | z,y € Qs} denote the
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subgroup of commutators of QJgs. Now,

H'(Qs,Q/Z) =Hom(Qs, Q/Z),
—Hom(Qs/ [Qs, Qs],Q/Z) since Q/Z is abelian,
=Hom(Cy x Cy, Q/Z),
—7./27. & 7./ 2.

This proves that H*(Qs, Z) = Z/2Z & Z/2Z.
See [34, p.592] for H (C,,,Z) and H (Ts4,Z). For H (Q12,Z), see [10, p. 254].
O
The differential maps EP? — EP™% on the E; sheet of the spectral sequence
(2.3) involve restriction maps from group cohomology. We determine these maps in
the following Lemmata.

First, we need a Lemma from finite group cohomology.

Lemma 2.1.3. For any finite group G and positive integer n, there is an isomor-
phism
H"(G,Z) ~ H"(G,Z)

where 7. denotes the profinite completion of Z.

Proof. Let n be an integer > 0. Consider the tensor product of abelian groups
H™(G,Z) ® Z and the map
z

H(G,Z) ® Z — H"(G,Z). (2.10)
Z
Since 7Z is torsion-free as an abelian group, it is flat, and therefore (2.10) is an

isomorphism. On the other hand, since n > 0, H"(G,7Z) is finite, and
H(G,Z) = H"(G,Z) ® Z.
Z

O

The proceeding series of Lemmata give the maps induced on cohomology by the

inclusion maps of the cyclic groups into Qg, Q12 and Tyy. If Z/IZ (respectively, Z) is
a finite (respectively, infinite) cyclic group, we shall denote by 1 its generator.

Consider ()g. Note that the matrices a, b and ab generate the three cyclic sub-

groups of order 4.
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Lemma 2.1.4. An inclusion i : Cy — Qg induces the following restriction maps on

cohomology:
1. In degree 0, the map Z — 7Z is 1 — 1;

2. In degrees congruent to 2 mod 4, the three inclusions give three restriction maps

as follows:

The map 7.)27.® 7.)27. —H*({ a) ,7) = 7./AZ is
(1,0) =2, (0,1)+ 0

The map 7.)27. & 7.)27. —H*({ b) ,Z) = 7/AZ is
(1,0) = 0, (0,1) 2

The map 7.)27. ® 7.)27. —H*({ ab) ,7) = 7./4Z is
(1,0) — 2, (0,1) — 2.

Here, we are identifying H*(Qs, Z) with Hom(Cqy X Co,Q/Z) = 7./27. & 727
using the isomorphism Qs/[Qs, Qs] = Cqy x Cy;

3. In positive degrees congruent to 0 mod 4, the map Z/8Z — Z/AZ is 1 — 1 or

1—3;
4. In all other degrees, the map s trivial.

Proof. Our proof will be based on the proof of Lemma 2.1.2. Indeed, recall the
E, sheet of the spectral sequence (2.9).

Consider the (higher) 5-term exact sequence:
0 — E20 M H2(Qgs,7) =2 ES? — B30 — H3(Qs,Z) — 0 (2.11)

where ‘inf” and ‘res’ are the inflation and restriction maps, respectively. Given that

E3° =0, sequence (2.11) reduces to an exact sequence
0 — H2(Cy, Z) 2% H*(Qs,7) 25 HX(Cy, Z)%> — 0
which, with the appropriate substitutions, reads:

0 — Z/22 —> )27 ® 7.)27 —> 7.)27. — 0
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This implies that the map res: H?(Qg,Z) — H*(Cy,Z) must be non-trivial.
Recall the isomorphism H?(Qg,Z) = Hom(Qs/ [Qs, Qs], Q/Z) from the proof of

Lemma 2.1.2. Considering the exact sequence
0 —7Z—Q—Q/Z—0,

and the long exact sequence in cohomology, we arrive at a similar isomorphism
H2(04, Z) = HOI’H(C4, Q/Z)
Let (a), (b), and ( ab) be the three distinct cyclic subgroups of Qg of order 4.

The following isomorphisms are canonical:

H'(C4,Q/Z) = Hom({ a) ,Q/Z) —Z/AZ

¢ —¢(a)
HY(C,,Q/Z) = Hom(({ b) ,Q/Z) —7Z/AZ
¢ —o(b)
H'(Cy,Q/Z) = Hom(( ab) ,Q/Z) —Z/4AZ
¢ —¢(ab)

and, if x denotes a, b or ab, then for each copy of Cy = ( z) , we have a commutative
diagram
H?*(Qs,Z) —Hom(({ a) x (b),Q/Z) ¢
S
H?*(Cy,Z) ———Hom({ z) ,Q/Z) o
This means that the three maps res: H?(Qg,Z) — H?(C4,7Z) map the three
different copies of Z/27Z inside Z/27 & 7 /27 to Z/2Z in each case.
Consider the map res: H*(Qg,Z) — H*(Cy,Z) in degree 4. Looking at the Ej

sheet of the spectral sequence (2.9) from the proof of Lemma 2.1.2; and owing to the

fact that Eff’z = 0, we have a short exact sequence
0 — H*(Cy,Z/AZ) — H*(Qs,Z) — H*(Cy4,Z) — 0
That is,
0 — Z/27Z — Z/8Z — Z/AZ — 0,

which shows that the map res: H*(Qg,Z) — H*(Cy,7Z) is surjective, hence the

generator 1 maps to 1 or 3.
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That the map H°(Qg, Z) — H°(Cy, Z) is an isomorphism is clear. Since H'(Qg,Z) =
H?*(Qs,Z) = 0, it is also clear that the map is trivial in odd degrees.

It is sufficient to prove the Lemma in degrees 0,1,2,3 and 4 as the following
argument shows. Let z generate H*(Qs,Z), and let y be the image of x under res:

HY(Qs,Z) — H*(C4,Z). Then y generates H*(Cy,Z), and the diagram

H*M(Qs, Z) == H**™(C

(
giu:c l

H*(Qs, Z) —=— H*(Cy,

)

1%

4 Z
Uy
1, Z)
commutes. |
Lemma 2.1.5. An inclusioni : Cs — Q12 induces the following maps on cohomology:
1. In degree O, the map Z — 7 is 1 — 1;

2. In degrees congruent to 2 mod 4, the map Z./AZ — Z./2Z & 7/37 is 1 — (1,0);

3. In positive degrees congruent to 0 mod 4, the map Z/12Z — Z/27 & 737 is
surjective: that is, 1 — (1,1) or 1 — (1,2);

4. In all other degrees, the map s trivial.
An inclusion i : Cy — Q1o induces the following maps on cohomology:
1. In degree 0, the map Z — 7Z is 1 — 1;

2. In degrees congruent to 2 mod 4, the map Z/AZ — Z/AZ is surjective: that is,

1—=1orl—3;

3. In positive degrees congruent to 0 mod 4, the map Z/127 = ZJAZ & 7./37 —
ZJAZ is surjective: that is, either (1,0) +— 1,(0,1) — 0 or (1,0) — 3,(0,1) —
0,

4. In all other degrees, the map s trivial.

Proof. As explained in the proof of Lemma 2.1.4, it suffices to prove the Lemma

in degrees 0,1, 2,3 and 4. Consider the non-central extension

1—>06—>Q12—)02—>1
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and the associated Hochschild-Serre spectral sequence with coefficients in the 2-adic
integers Zs:
Eg’q - HP(C27HQ<067Z2)) — HP+Q<Q127Z2> (212)

Note that

(

HP(Cy,Zs) = { 0 if p is odd

Z)2Z if p > 0, is even
\

(

H(Cs,Z2) = § 0 if ¢ is odd

Z)27 if q¢ > 0, is even
\

Moreover, HY(Cy,7/27) = Z/2Z for all ¢, and the action of Cy on H(Cs,Zs) is
trivial. The following terms of the spectral sequence stabilize at the Ej4 sheet, which

takes the form

q
7.)27
0 0
7/27 0 7.)27
0 0 0 0
Zs 0 7/27 0 0

We can therefore read off the exact sequence
00— H2(027Z2> — H2(Q12,Zg) — H2<C6,Z2>CQ — 0

That is,
0 — Z)27Z — Z]AZ — Z./27. — 0
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from which we see that the degree 2 map at the prime 2, is

res : HQ(ng,ZQ) — H2(06,Zg)

1—1

Furthermore, we have an exact sequence
0 — Z/27 — H (Q12,Zs) —> H*(Cs,Z2) — 0

That is,
0 — Z2/27 — 7/AZ — 7.]27. — 0,

from which we see that the degree 4 map at the prime 2, is

res H4(Q12,Z2) — H4(C6,Z2>

1—1

Next, consider the spectral sequence (2.12) at the prime 3, and note the following

results:

(

HP(Cy. ) — Zs iftp=0
\Oifp;éO
(
Zs if q=0

H(Cs,Z3) = 0 if ¢ is odd

Z/3Z @ x? if ¢ > 0, is even
\

where y2 is the Cy-module with action given by the non-trivial character y : Cy —
(2/37)*. However, since HP(Cy, H1(Cg,Z3)) = 0 for p > 0, only the first column of

the spectral sequence is non-zero, so that the edge maps
res : Hq(ng, Zg) — Hq(CG, Z3)02

are isomorphisms.

Observe that by Lemma 2.1.3, we can decompose

H"(Q12,Z) = H"(Q12,Zs) ® H"(Q12,Z3) ® H"(Q12, H Zy) for n. >0
p#2,3
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However, since 12 is invertible in [[ Z,, the last summand on the right is 0, and
P#2,3
we are left with

Hn(QI%Z) = Hn(Qm,ZQ) S¥) H”(Q12,Z3) for n > 0.

The degree 0 map, Z — Z is clearly an isomorphism. If n > 0 we can put the
information at the primes 2 and 3 together to conclude that the degree 2 map is

non-trivial: that is,

H*(Q12,Z) — H*(Cs,Z)

13
and the degree 4 map is surjective: that is,

H*(Q12,7Z) — H*(Cy,7Z)
1+ (1,1), or

15 (1,2).

To prove the second part of the Lemma, consider an inclusion Cy < )12 and recall
the extension:

1—>03—>Q12—>C4—>1

where the generator of C); gives the non-trivial automorphism of C'5. The restriction
maps in degrees 0, 1 and 3 are clear. Consider the Hochschild-Serre spectral sequence

associated to this extension, with 2-adic coefficients Zs:
HP(C4’HQ(CB,Z2>) — HP+Q<Q12’Z2) (213)

Given that H9(C3,Zy) = 0 for ¢ > 0, the spectral sequence collapses to yield an

isomorphism

inf : H"(Cy, Zy) = H"(Q12, Zs)

in all dimensions. On the other hand, one can check that the composition res o inf is

the identity on cocycles, hence
res : Hn(ng,ZQ) = Hn(04, Zg) (214)

is an isomorphism for all n.
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Consider (2.13) with coefficients in the 3-adic integers Zs. Only the first column

of the Es-sheet is nonzero, so again, the spectral sequence collapses to yield
H™(Q12,Zs) = H"(Cs, Zs) " (2.15)

Putting (2.14) and (2.15) together, we conclude that the restriction map in degree

2 is an isomorphism:

Z]A7 — Z1]AZ
1—1, or

1+ 3,

and in degree 4, is surjective:

7./A7 & 7./37 — 7.JAZ

O
Lemma 2.1.6. An inclusion i : Cs — Tyy induces the following maps on cohomology:
1. In degree O, the map Z — 7 is 1 — 1;
2. In degrees congruent to 2 mod 4, the map Z/37 — ZJ6Z is 1 +— 2 or 1 +— 4;

3. In positive degrees congruent to 0 mod 4, the map Z/127 = 7./37 & 7./A7 —
Z/6Z is surjective: that is, (1,0) — 3,(0,1) — 4 or (1,0) — 3,(0,1) — 2;

4. In all other degrees, the map 1is trivial.
Proof. By Lemma 2.1.3,
H (T5y,7) = H (1o, 7o) & H (Toy, Zs3).

Consider the subgroup Cs = C5 x Cy C Tyy, and the spectral sequence at the prime
2:
Eg’q = HP(OQ,Hq(Og,Zg)) —— Hp+q(06,Zg) (216)
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Since H1(Cs,Z2) = 0 for ¢ > 0, the spectral sequence collapses, and the edge maps
give isomorphisms

res : H.(CG,ZQ) = H.(CQ,ZQ).

It shall therefore suffice, at the prime 2, to consider the restriction map H (T4, Zo) —
H (C5,7Z5). But now Cj is a normal subgroup, so we can use the spectral sequence

associated to the extension
1—>CQ—>TQ4—>A4—>1,

namely,

Eg’q = Hp(A4, Hq(CQ,ZQ)) — Hp+q<T24,Z2>'

The integral homology of A, is given in [34]. Using this, and the Universal
Coefficients Theorem, one can show that

.

7.)27. ¢=0
0 qg=1
HY(Ay, 2)2Z) = { 7./27. =2

7)2L®TLI2L q=3

| Z/22 q=4

Similarly, one can calculate H%(Ay,Zs) for 0 < q < 4. The following terms of the
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spectral sequence stabilize at the E, sheet, which reads:

q
7.)27
0 0
0 0 7.)27
0 0 0 0
Zs 0 0 0 7.)27

Since H?(Tyy,Zs) is itself trivial, the map in degree 2:

H2 (T24, Zg) — H2(027 Zg) is trivial.

There is a filtration on H*(Tyy, Zs):
7.)27. C 7.JAZ C H Ty, Zy) = 7./87Z,
where the top quotient is Eff’o = H*(Cy,Zy) = 7 /2Z; hence there is an exact sequence
0 — Z/AZ — H*(Tyy, 7o) — H*(Cy,Zy) — 0.

That is,
0 — Z/A7 — Z/8Z — 7./27 — 0,

from which we can conclude that the degree 4 map is

H4(T247 Ly) — H4(02, Zs)

1—1.

Next consider the spectral sequence (2.16) at the prime 3. Owing to the fact that
HP(Cy,Z3) = 0 for p > 0, the edge maps give isomorphisms

res : H'(CG,Zg) = H.(Cg,Zg).

However, C3 is not a normal subgroup of Ts4, so the above method does not apply.

The subgroup Cj is instead the Sylow 3-subgroup, and a well-known result [10, p. 259]
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gives

H (Tyy, Z3) =2 H (Cs, Zg)N (),

The set H'(Cs, Zs)V () denotes the cohomology classes which are invariant under
the action of the normalizer N(Cj3) of Cj in Tp4. The cohomology H'(Cs,Zs) is a
ring Zs[x]/ < 3x > in which deg(x) = 2, and the action of any element of N(Cj) is

either trivial, or else takes x to —x. A quick check using Sage gives

1 0\ (o) [1 —i
N<C3> = C3 U ) ) )
0 -1 v 1 - 0
and each element in N(Cj5) acts trivially on C5. Therefore,

¢

Zs forn=20

Hn(C:'wZS)N(CB) =40 for n odd

Z/3Z for n even,> 0
\

The restriction map at the prime 3, for both degrees 2 and 4, is an isomorphism:
Hi(Tyy, Zs) — H(Cy, Zs) for i = 2,4.

Combining the information at both primes, and making use of Lemma 2.1.3, we
arrive at the desired result.
O
In the sequel, we shall calculate the second cohomology of some congruence sub-
groups of I'. Rather than find a fundamental cellular domain for each subgroup, we
shall employ a fundamental tool called “Shapiro’s Lemma”. Suppose that T is a
subgroup of " and that M is a right R[Y]-module under p for some commutative
ring R. We can regard R[] as a R[['| — R[Y] bi-module: that is, a left R[[']-module
and a right R[Y]-module. Then Coindy (M) = Hompgp(R[[],M) = {f : [ —
M | f(vh) = p(h)f(y) Vv € T',h € T} is a left I-module called the coinduced
I'-module. The action of T is given by (vf)(¥) = f(v ).

Lemma 2.1.7 (Shapiro). If T is a subgroup of T and M is an R[Y]-module then

there is an isomorphism

H(Y, M) = H(T, Coind *+(M)) for all i >0
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For a proof, see [38, p. 171].
Remark 2.1.1. If T has finite index in T, then Coind’.(M) = Ind’.(M).

Remark 2.1.2. In the case that M is a trivial R[Y]-module, Coind’(M) can be
identified with the I-module of functions {f : I'/YT — M}.

2.2 Examples

Let R be a commutative ring, and recall the Ms(R)-modules Ei(R)®det(v) from
Subsection 1.4.1.2. Write Ex(R) for this module when considered as a representation
of SLy(R). Note that Ey(R) has {zy** : 0 <i <k} as an R-basis. Furthermore,
write Ej;(R) for Ej;.,..(R) considered as an SLo(R)-module. We shall only be
interested in the case when k = [; in particular, this ensures that —Id acts trivially. It
is useful to remark that Fj(R) = Sym*(R?®) and Ej,(R) = Sym*(R?) %) W
as SLy(R)-modules, where Sym‘(R?) is the i"» symmetric power of the standard
representation of SLy(R) on R?® and the overline on the second factor means it is
twisted with complex conjugation.

Consider the following congruence subgroups of I':

10
[(a):=¢yel|y= (mod a)

0 1

1 b
[i(a)=q¢yel|y= (mod a)

01

a b
Fo(a):=<¢yel |y= (mod a)

0 d

for some non-zero ideal a of O called the level. For simplicity, we shall assume that a
is a power of a single prime ideal p. Note the inconsistency in notation with Chapter
1; to avoid using too many symbols, we have used the notation I'(a) for both the
congruence subgroup of GLy(F) and of SLy(F).

We shall make use of Lemma 2.1.7 in the case that M is a trivial Q[Y]-module.
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First note the following two set bijections:

['/T(a) +— primitive vectors in (O/a)?

a b
= (a,c)

Aa
— where = if A e (0/a)”

We call a vector (z,y) in (0/a)? primitive if x and y are coprime in O/a; since a = p",
this is equivalent to either x or y being a unit in O/a. The set P*(O/a) = P}(O/p")

is:

PLO/p") = 1 T EO)"y U p Cw e (O/p") /(14 p" )
U p @ e (O/p) /(L4 pm) U

U pf_1 w e (Of")/(1+p) p U

To calculate H*(Tg(a), M), the general method is to list the elements of P*(O/a),

calculate Indgo(u)(M )lii for each 1-cell P;; and then determine the quotient as in
(2.7). Let s; be a lift to T of the i element z; of P1(O/a): that is, {s;} is a set of
coset representatives for I'/T'y(a). Let f € Ind?o(a)(M ). We have defined the action
of I so that if g € T", then

(9f)(s:) = f(g7'si) = f(s;h) = f(s;) when g~ 's; = s;h for some h € Ty(a)
A Q-basis for Indgo(u)(M) is given by {f., | z; € P(O/a)} where f,,(z;) =1ifi=j
and 0 otherwise. The action of I' on a basis element f,, is

9fw, = fu, it 31 € Do(a) so that g~'z; = z;h

Proposition 2.2.1.
dimg(H(To(3), Q)) = 0.
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Proof. A set of representatives for the quotient O/(3) is given by
0,1,0,2,1+,2 +14,2i,1 + 20,2 + 2i}.

Therefore,

. Of |1 [2| [é] [1+4| [244] [20| [1+2i| [2+2i| |1
P(o/(3)): Y Y Y Y Y ? Y Y )
(1] 1] |1 1 1 1 1 1 0

Let 7; denote the generator of the stabilizer I';; of the 1-cell P;;. That is, define

0 ¢ 0 —1 0 1 0 1
M= V2 = V3 = V4 =
1 0 1 0 11 -1 1
Note that v, = a,v, = b, 73 = ¢ and 4 = ce?.

For i =1,--- ,4, we shall calculate the orbit of each element in P*(0/(3)) under

Vi
Observe that if x € O/(3), then

w1 = -
1 —ix
B
a xr
:w—l
e

For simplicity, let z denote the element [{] € P*(0/(3)), and write oo for [}]. The

set of orbits under the action of ~; is:
[10,00} {11, 120, {0,201, {1+ 4,2+ ), {1 + 20,2 + 20} .

Let us write M for Ind?o(?)) (Q) and f, for the basis element in M which satisfies
foly) =1if z =y € PHO/(3)). Then

M™M= spangt fo + foo, f1, for fi + foi, fivi + foris freoi + forai}

Similarly, the set of orbits under the action of 7, is

{{0,00},{1,2},{d}, {2}, {1 +4, 1 +2i}, {2+ 24,2 + i} },
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hence
M"2 = spang{ fo + foo, J1 + fo, fis fais fioi + fraois fasi + forai}
The set of orbits under the action of ~3 is
{{0,00,i},{1,2+2i, 1 + i}, {2+, 1+ 2¢,2}, {2i}},
hence
M = spang{ fo + feo + fi, f1 + for2i + fivis fori + firai + fo}
The set of orbits under the action of v, is
{{0,00,1},{2},{3,2 + 20,1 + 3}, {24+ 4,1 + 2i,2i}},
thus
M = spang{ fo + foo + f1, fo, fi + forai + freis fori + fivei + fai}-
Using row reduction, we find easily that

M" 4+ M"2 4+ M"Y+ M™ =spang{fo + fi + foor f2. fiai + for2i, fovi + fraoi, foir fis

Jigi + fogis frooi + foroi, frvi + iz fogi + fogoi}

Note that —1 € T" acts trivially on P*(O/(3)) and hence on M. The space H?*(Ty(3), Q)
is therefore given by the quotient (2.7). Since dimg(M" + M + M's + M) =
dimg(M) = 10, it follows that

dimg(M/(M™ + M" + M"™ + M"™)) = 0.

Our result is compatible with that of Adem and Naffah, who calculate that

H?*(T'y(3),Z) 2 Z,/6.
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The following table summarises the range of our calculations:

a dimg (H?
(1+44)
(1+1)?
(1+1)3

(3)
(14 24)
(2+1)
(1 + 4i)
(3 + 21)

dimg(H*(T(a), Q))

—~
—
o
—~
a
~
(&)
~
~—

12

e e e == S I NG B =

In [12], Sengiin calculates the rank of a certain subspace of H?(T'y(a), Q) for many
ideals a. The rank of H*(T'y(a), Q) is equal to the dimension of H?*(T'y(a), Q). Sengiin
reports that approximately ninety percent of the time, the rank of this subspace is
0. Our results above are compatible with his in so far that the rank of his subspace
is never larger than 7. See Remark 2.4.2 below.

Consider the congruence subgroup IV = I'(4)SLs(Z). Note that I'' C T', but we
used the same symbol for the subgroup I'(4)G(Z) C G(O) in Chapter 1. Recall

(Proposition 1.2.7) the 1-dimensional representation of IV denoted rg.

Proposition 2.2.2.
HX (I, ko) = QW

Let V = Indp (ko) = {f : T — Q| f(zv) = ko(¥)f(z)}. Since dimgV = [T :
['] = 64, the calculation is carried out using Sage. The proof of Proposition 2.2.2
shall be an explanation of the Sage algorithm used. First, we need a Lemma.

If @ generates the ideal a C O, we shall write I'(a) as shorthand for I'(a). If the
ring R is not O, we’ll write SLy(R,b) for the group of matrices in SLy(R) which are
congruent to the identity modulo the ideal b C R (generated by b).

Lemma 2.2.3. Let {a;} be the elements of SLy(0/4,1 + i)/SLy(0/4,2) and let
{b;} be the elements of SLy(0/4,2 + 2i). Choose lifts {a;} and {b;} to T. Then
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{dil;j for 1 <i,j <8} is a set of (left and right) coset representatives for the group
I'"inT.

Proof. First note that
F/F’ = S15(0/4)/SLy(Z/A7). (2.17)

(This is a set bijection, since neither side is a group).

Consider the filtration
SLQ(O/4) D) SLQ(O/4, 1+ Z) D SLQ(O/4, 2) D SLQ(O/4,2 + 22) D1,
and note that, for 1 < n < 3, there is an isomorphism

SLy(0/4,7")/SLy(0/4, 7" ) — 5l5(Z/27)

14+ 7"z —x

where sl is the Lie algebra of SLs. The top quotient SLo(0/4)/SL2(0/4,1 4 1) is
isomorphic to SLs(Fy). This means that

|SLy(0/4)| = 6% 8°.
On the other hand, there is a filtration
SLy(Z/4) D SLy(Z/4,2) D1,
and a similar argument shows that
|SLy(Z/4)| = 6 % 8.

Consequently, we must find 82 representatives.

From above, it follows
SLy(0/4) = {g(1 + 7)1+ 2y ) (1 + 7°2') : g € SLy(Z)27);,y, 2 € sly(Z/27)}

where ¢ € SLy(Z/4Z) and ¢ = g (mod 2), and 2/,y', 2" € sly(Z/AZ), such that
r = 2 (mod2),y = ¢ (mod2),z = 2/ (mod 2). But (1+ 2y) and (1 + 732/)

commute, so we have

SLy(0/4) = {(1 + 72 YA + 73V 1 +2y)g : g € SLy(Z)27); z,y, 2 € sly(Z/27)},
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and (1+2y')g € SLy(Z/AZ).
The set of 64 representatives {(1 + 72’)(1 + m32’)} cover all the cosets, so there

is exactly one representative in each coset.

|

A set of lifts to I' of representatives for the top quotient SLo(0/4)/SL2(0/4,1+
i) = SLy(Z/27Z) is given by:

_ 10 0 1 11 10 1 -1
SLQ(O/4)/SL2(O/471+Z): 5 ) ) ) )
0 1 -1 0 01 11 1 0
0 -1
1 1

Likewise, the second quotient SLy(0/4,1+1)/SLy(0/4,2) is SLy(0/2,1 + i) and a

set of lifts of representatives is:

10 t 0 1 7 1 0 10w
SL?(O/471+Z)/SL2(O/472) = ) ) ) )
0 1 0 — 0 1 m 1 0 —2
t 0 1 T 1 s
ro—i) \m 1+2i) \x 2—-i
The lifts of the third and fourth quotient are given respectively by:
1 0 1 2 10 -1 0
SLy(0/4,2)/SLa(0/4,2 4 2i) = , , , ,
0 1 0 -1
2 -5 2
5] ~1
. 3 — 61 1 2+ 2
SLy(0/4,2+ 2i) = , ,
01 — —1—-2:
1 0 -5+ 2t 4
242 1) \ 242 —1-2)
—5+2i 242 1 2+ 2
4 —1-2i) \2+2 1+8)
—1+2i 242

2421 33—
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We have used the fact that SLy(0/4,2)/SLa(0/4,2 4 2i) = SLa(O0/(2 + 2i),2).
We turn now to the algorithm used to calculate H*(I", kg). Consider the following

Sage environment, which shall be the setting of all algorithms in this thesis:

F.<i> = NumberField(x"2+1)

R = F.ring_of_integers()

pi = F.ideal(1+i)

k = R.residue_field(pi, ‘b’)

kk = R.quotient_ring(2, ‘b’)

kkk = R.quotient_ring(2*pi, ‘b’)
kkkk = R.quotient_ring(4, ‘b’)
kkkkk = R.quotient_ring(4*pi, ‘b’)
M

MatrixSpace(F,2)

m = MatrixSpace(k,2)
mm = MatrixSpace(kk,2)
mmm = MatrixSpace(kkk,?2)

mmmm = MatrixSpace (kkkk,2)

Recall formula (2.7). To calculate the space V112 + VT2  Ylss 4 Yla - we must
determine the action of I' on V.

For r € {dil;j for 1 <1,5 < 8}, define

ko(h) if z =rh, h eI’
5.z = 4 )

0 otherwise

Then {6, : r € {abjfor1 < i,j < 8}} forms a Q-basis for the vector space
V =Indp (ko). If v €T,

: —1,. /
(16.)(2) = 5, () = ko(h) ity 'tz =rh, hel

0 otherwise
\

(

ko(h)ds(z) if ¢ = yrh = sh'h, for h, b’ € T

0 otherwise
\
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It follows that 9, = kg(h)ds if yr = sh. The matrix of the action of v on V' is a

64 x 64 matrix whose (r, s)™ entry is rg(h) if yr = sh and 0 otherwise. Clearly, we

must be able to find the representative r € {&il;j for 1 <i,7 <8} of any given v € I
Define:

quotient0 = [M([1,0,0,1]),M([0,1,-1,0]),M([1,1,0,1]),M([1,0,1,1]),
M([1,-1,1,01), M([0,-1,1,11)]

quotientl = [M([1,0,0,11),M([i,0,0,-i]), M([1,1+i,0,1]),
M([1,0,1+i,1]), M([i,1+i,0,-i]), M([i,0,1+i,-i]),
MC[1,1+3,1+31,142%i]), M([i,1+i,1+1,2-i])]

quotient2 = [M([1,0,0,1]),M([1,2,0,1]), M([1,0,2,1]),
M([-1,0,0,-11), M([-1,2,0,-1]), M([-1,0,2,-1]), M([1,2,2,5]),
M([-5,2,2,-1])]

quotient3 = [M([1,0,0,1]) ,M([3-6%i,4,-4,-1-2%i]), M([1,2+2%i,0,1]),
M([1,0,2+2%1,1]), M([-5+2%i,2+2%i,4,-1-2%i]),
M([-5+2%i,4,2+2%i,-1-2%1]), M([1,2+2%1,2+2%1i,1+8%i]),
M([-1+2%1,2+42%i ,2+2%i ,3-2%i])]

quotientOm = [m([1,0,0,1]1),m([0,1,1,0]),m([1,1,0,1]1),m([1,0,1,1]),
m([1,1,1,0]),m([0,1,1,1])]

quotientimm = [mm([1,0,0,1]), mm([i,0,0,-i]), mm([1,1+i,0,1]),
mn([1,0,1+i,1]), mm([i,1+i,0,-i]), mm([i,0,1+i,-1]),
mm([1,1+1,1+1,142*%1]), mm([i,1+1,1+1,2-1])]

quotient2mmm = [mmm([1,0,0,1]), mmm([1,2,0,1]),

mmm([1,0,2,1]1), mmm([-1,0,0,-11),
mmm([-1,2,0,-11), mmm([-1,0,2,-11),
mmm([1,2,2,5]), mmm([-5,2,2,-1])]



Chapter 2. Second cohomology 76

quotient3mmmm = [mmmm([1,0,0,1]), mmmm([3-6%i,4,-4,-1-2*i]),
mmmm ( [1,2+2%1,0,1]), mmmm([1,0,2+2%i,1]),
mmmm ( [-5+2*1,2+2%1,4,-1-2%i]) , mmmm( [-5+2*1i,4,2+2%i,-1-2%i]),

mmmm( [1,2+2%1,2+2%1i,1+8%i]), mmmm([-1+2%1i,2+2%i ,2+2%i ,3-2%i])]

representatives = [axb for a in quotientl for b in quotient3]

The input of the following algorithm is an arbitrary element v € I', and the output
is the factorisation v = repl x rep3 * 5 * rep2 x rep0 for repl € I'(1+1)/T'(2) (called
‘quotient1’ above), rep3 € T'(2 + 2i)/T'(4) (called ‘quotient3’ above) , v5 € I'(4) and
rep2 x rep0 € SLy(7Z).

def Decomposition(gamma) :
r = quotientOm.index (m(gamma))
rep0 = quotientO[r]
gamma2 = gamma*repO.inverse()
a = quotientlmm.index(mm(gamma2))
repl = quotientl[a]
gamma3d = repl”-1lxgamma2
u = quotient2mmm.index (mmm(gamma3))
rep2 = quotient?2[u]
gammad4 = gamma3*rep2”-1
b = quotient3mmmm.index (mmmm(gamma4))
rep3 = quotient3[b]
gammab = rep3”-lxgamma4d

return([repl,rep3, gammab,rep2*rep0])
We must implement the character kg.

def residuesymbol(x,y):
K = R.residue_field(y)
xbar = K(x)

answer = xbar” ((norm(y)-1)/2)
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if answer == K(1):
return 1

elif answer == K(-1):
return -1

elif answer == K(0):
return O

def legendresymbol(x,y):
factors = F.factor(y)
answer = prod([residuesymbol(x,p[0]) for p in factors if p[1]%2])

return answer

def kappa(A):
c = A[1][0]
d = A[1][1]

return legendresymbol(c,d)

It is sufficient to calculate the action on V' of each v which generates the stabilizer

[;; of each 1-cell Py;: that is, v = a,72 = b,73 = ¢, 74 = ce>.

gammainverselist = [M([0,-i,-i,0]),M([0,1,-1,0]), M([1,-i,-1,0]),
M([1,-1,1,01)]

matrixlist = []
for kk in range(4):
gamma = gammainverselist [kk]
for ii in range(64):
r = representatives[ii]
answer = Decomposition(gammax*r)
newrep = answer [0]*answer [1]
jj = representatives.index(newrep)
kappavalue = kappa(answer[2])

matrixlist.append([ii,jj,kk,kappavalue])
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def func(ii,jj,kk):
for entry in matrixlist:
if entry[0]==ii and entry[1]==jj and entry[2]==kk:
return entry[3]

return O

‘gammaactionK’ is a list of the four 64 x 64 matrices which give the action of

Y152, Y3 and 4 on V.

gammaactionK = [Matrix([[func(ii,jj,kk) for ii in range(64)]

for jj in range(64)]) for kk in range(4)]

Finally, we use formula (2.7), together with Lemma 2.1.7 to calculate H? as the

quotient V/(VT2 4 YTz 4 yTae 4 yTa),

V = QQ~64
kernels = [(1-gammaaction[kk]).right_kernel() for kk in range(4)]

generators = []
for W in kernels:

generators=generators+W.basis ()

subspace=V.span(generators)

H2=V.quotient (subspace)

The output is that ‘H2’ is 5-dimensional. This concludes the proof of Proposition
2.2.2.

We can regard x as a 1-dimensional representation over C. Indeed, define
ke: TV — GL(Q ® C).
Q
Since C is flat as a Q-vector space,

H2(T" k) = H*(I' kg ® C) = H*(I", kg) ® C = CO).
Q Q
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For convenience, we shall regard x as a representation over C in the following results.

Consider the I''modules E5(C) and E52(C) defined at the beginning of this sec-
tion. Below, we shall modify the above programme to calculate H*(T, Fy2(C)),
H*(T, Indf (kc) 2 E5(C)) and H*(T, Indp, (sc) 2 E»5(C)).

Proposition 2.2.4.
H*(T, Ind 1. (k¢) ® Fo(C)) = C®
C

Recall that Ey(C) has a C-basis of 3 elements. Let e; denote the matrix of the

action of 7; on Ey(C). Then

0o 0 -1 0 0 1
et=10 -1 0 |; e2=10 -1 0};

-1 0 0 1 0 0

0o 0 -1 0 0 1
es= 10 —1 2 |; es=10 —1 2

-1 ¢ 1 1 -1 1

We define the set {¢;} in Sage as ‘gammaactionS”:

E = MatrixSpace(F,3)
gammaactionS = (e¢lo,0,-1,0,-1,0,-1,0,01),E([0,0,1,0,-1,0,1,0,0]1),
E([0,0,-1,0,-1,2%i,-1,i,1]),E([0,0,1,0,-1,2,1,-1,11)]

We take the tensor product of the representations (‘gammaactionKS’ below) and

calculate the quotient H? as above:

gammaactionkS = []
for ff in range(4):
temp = gammaactionS[ff]
for gg in range(4):
hh = gammaactionK[gg]
if ff==gg:
answer = temp.tensor_product (hh)

gammaactionkS.append (answer)
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KS_spacel = MatrixSpace(F,192)

KS_space2 = F~192
KS_kernels = [KS_spacel(l-gammaactionKS[p]).right_kernel()

for p in range(4)]

KS_generators = []
for W in KS_kernels:

KS_generators=KS_generators+W.basis()

KS_subspace = KS_space2.span(KS_generators)

H2_KS = KS_space2.quotient (KS_subspace)

The output is that H? is 3-dimensional.
Next, let é; denote the matrix of the action of 7; on E5(C). Then

0 0 -1 0 0 1
et=10 -1 0 |; e2=10 -1 0];

-1 0 0 1 0 0

0 0 -1 0 0 1

es=10 ¢1—1 2 |; e4=10 —1 2

2t 1 +1 1 1 -1 1

We define the set {¢;} in Sage as ‘gammaactionSC”:

gammaactionsSC = [E([0,0,-1,0,-1,0,-1,0,0]),E([0,0,1,0,-1,0,1,0,0]),
E([O:O:-l:oyi—l:2*1:2*i>i+1:1]):E([030:1:O>—1’2:1:—131])]

The following ‘gammaactionSSC’ is the action of I' on the representation Es4(C)

(= E5(C) % Ey(C)).

gammaactionSSC = []
for r in range(4):
templ = gammaactionS[r]

for s in range(4):
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temp2 = gammaactionSC([s]
if r ==
answer = templ.tensor_product (temp2)

gammaactionSSC.append (answer)

Analogously, we denote the action of T' on Ind [v(kc) @ FEa2(C) as ‘gammaac-
C

tionKSSC’, and thereafter the cohomology is calculated as before.

gammaactionkKSSC = []
for r in range(4):
templ = gammaactionSSC[r]
for s in range(4):
temp2 = gammaactionK[s]
if r ==
answer = templ.tensor_product (temp2)

gammaactionKSSC. append (answer)

Proposition 2.2.5.

HZ(F, EQQ(C)) =C and
H*(T, Ind 1. (k¢) 2 E,5(C)) =¥
Remark 2.2.1. Sengiin has calculated [12] that, as an O-module, H*(T'/{£1}, F22(0))

has rank 1 and contains 2-torsion. He also conjectures that H?(T'/{%1}, E}x(0))

contains 2-torsion except when k = 0.

2.3 Integral cohomology

The integral cohomology of groups is in general much harder to determine than
its counterpart over a field, owing to the possible torsion in the group. The homology
groups of the Bianchi groups have been completely determined [34] as has the integral

ring structure [2]. In this subsection, we shall calculate

H*(T,7Z)
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and determine, up to extension,

H*(T, kz)
for the integral representation
Rz - I — GLl(Z>

Recall the spectral sequence (2.3) with M = Z. Using the integral cohomology

calculations of Section 2.1, we can write down the first 3 rows of the E;-sheet:

dtl),z d},Z
H*T,Z)® - ® H*(Ty,Z) — H*(T19,Z) & - -- & H*(Ty1,Z) — H*(Cy,7Z)

0 0 0
0,0 1,0

74 di> 74 di> Z,

p

If P,P; is an edge with vertices P; and P;, and an orientation directed from F; to
P;, then T';; is a subgroup of both I'; and I';, and there are restriction maps in group

cohomology:
resll:jj :H(I';,Z) — H'(I';;,Z) and res?jj :H(I;,Z) — H(T'y;,2),
and the map

B HT.Z)— H(I;2Z) is

0—cells P;

(1, X2, T3, T4) reSIF{j (x;) — res%j ().

For ease of notation, write H(T;) (respectively, H%(T;)) for H°(T;,Z) (respectively,
H?(T;,Z)), and Z/m for Z/mZ. We shall choose an (anti-clockwise) orientation of
the cell complex ~ \ D' so that the map d} is given by
HO(Ty) @ H°(Ty) @ HO(T3) @ H°(Ty) — H°(T15) & H°(Da3) @ HO(T3y) & H°(Ty)
2OLBPLPL -2 PLOL DL

(w1, wa, w3, wy) = (Wo — Wy, W3 — Wa, Wy — W3, W1 — Wy)



Chapter 2. Second cohomology 83

Hence ker(d)’) = Z.
Recall, from Lemmata 2.1.4, 2.1.5 and 2.1.6, that for some ¢ and 7, an inclusion
I';; = T; induces an isomorphism H?(T;) & H?(T;;). In such cases, we shall choose

the isomorphism which maps the generator 1, to 1. Then d(l)’2 is the map

HA(T)) @ H2(Ts) @ H2(Ds) @ H(Dy) — H2(D1o) & H2(Dag) © H2(Tay) & H2(Tyy)
(Z/)267)2) ®L/AGTLI3O L4 — T/A0 (L2 T)3) & (220 1)3) & Z,/4

(fEth, €3, l‘4,l’5) — (1'3 - 21‘1, —X3,T4,T5, —Ty4, 21‘2 - ZE5)

Hence ker(d)?) = span{(1,1,2,0,2),(0,1,0,0,2)}. Both generators of the kernel
have order 2, and they are linearly independent, so ker(d)*) = Z/2 ® 7/2.

We shall need the following restriction maps:
Lemma 2.3.1.

The inclusion Cy — Cy induces the map H*(Cy,Z) — H*(Ca,Z), 1+ 1.
The inclusion Cy < Cg induces the map H*(Cs,7) = 7./27.® 7./37 — H*(Cs,7),
(1,0) — 1,(0,1) + 0.

Proof. In both cases, the Hochschild-Serre spectral sequences stabilize at the Ey

sheet, giving, in the first case, an exact sequence:
0 — H*(Cy,Z) — H*(Cy, Z) == H*(Cy,Z) — 0,
and in the second case, an exact sequence:

0 — H?*(C3,Z) — H*(Cs,Z) == H?*(Cy, Z) — 0.

Therefore, dy? is the map

Hz(rl2> S HZ(F23) S HQ(F34) ) H2(F41) — HQ(Cz)

(Y15 Y2, Y3, Y, Y5, Ys) > Y1+ Y2 + ya + Ys.

We have ker(dy®) = {(y1, Y2, Y4, ¥6) : Y1+ Y2 + Ya + Yo is even } @ (Z/3)2. The set
{(y1,92,y4,Y6) :© Y1 + Y2+ ys + Ys is even } is generated by

(1,1,0,0),(0,0,1,1),(0,1,1,0).
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The first and second elements are 4-torsion, and the third element is 2-torsion. Hence,
ker(d}?) = (Z/4)? © Z)2 ® (Z/3)*.

It is clear that Im(d;?) = Z/2.
The Fy = FE, sheet of the spectral sequence has first 3 rows:

2)22.® )27 ((Z/4)? © Z)2 ® (Z/3)?)/Im(d)?) 0
0 0 0
Z 0 0
p
Hence,

Proposition 2.3.2.
H*T,Z) = 7)27 & 7./]27

Next we turn our attention to the calculation of H?(I", kz). For this, we need
Proposition 2.3.3. For all 1-cells P;P;,
H'(Tij, Ind 1 (kz)) = 0

Proof. Fix 4,j (i.e. P;P;) and consider Ind [(kz) as a representation of I';;.
There is a I';; - isomorphism,
Ind [ (kz) = @ M,
Iyl
where the sum is taken over double cosets I';;zI" C I' and M, = {f : I';;zI" —
Z| f(xv') = k() f (@)}

For each z € T';;\I'/T", let I';;, = {v € I;; | 72" = 2I"}. Then M, =
Indqugyz (kz o ad(x)) where kz o ad(x) is the representation of I';;, given by kz o
ad(z)(y) = kz(z'yz) when v € T';;,. Then by Lemma 2.1.7,

H' (T, Ind [(k2)) = € H'(Tija, kz 0 ad(x)) (2.18)

xeFij\F/F’
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If k(z~'yz) = 1 for each double coset representative = and each v € I';;,, then
H'(Dyja, k7,0 ad(z)) = H' (Lyj 0, Z)

and one can check that indeed this is the case. It remains to observe that H'(G,Z) =
0 for all finite groups G. |

A near identical proof of Proposition 2.3.3 works for the 0-cells and for the 2-cell.
That is, for all 0-cells P;, and for the stabilizer of the 2-cell {£1},

HY(T;,Ind L (rz)) = H'({£1},Ind 1.(kz)) = 0.
Hence,
Corollary 2.3.4. The map
H*(~\D', Ind 1,(kz)) — H*(T, Ind 1 (k7))
18 1njective.

Proof. Recall the spectral sequence (2.3) with M := Ind [, (kz). On the E; sheet,
the cohomology of the bottom row E'l’o gives the cohomology of the cell complex
~ \D'. By Proposition 2.3.3, the first three columns of the row EP"' are 0. The F,

sheet therefore takes the form

Y
0 0 0

H(~\D',M) H'(~\D' M) H*~\D' M)

The exact sequence of low-dimensional terms reads
0 — H*(~\D',M) — H*(IT,M) — Y — 0

and the result follows. O
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Remark 2.3.1.

YVi=kerqd?’: @ H*(iIndp(kz) » €D H*(Ly,Ind [(kz))

0—cell P; 1—cell P;P;

We have shown that H?(I", kz) is an extension
0 — H*(~\D',kz) — H*(I' kz) — Y — 0 (2.19)

Our next task is to understand the map d(lm. To this end, we shall use the
decomposition (2.18). We require a precise list of the groups I';;, for all 1-cells P;;
and all double cosets z;, € I';;\I'/I". For 0 < k < 63, let {2} denote the (ordered)

set of representatives I'/T".

IT;;\I'/I"| | Equivalent reps | I';; .

P12 63 0~8 F12,mk = CQ for all k&
(
Cg for £k =0,1,8,9
P23 62 2 ~ 3 ~ 7 F23,zk =
(5 otherwise
\
(
Cy for k = 54,55, 58,60
Py, 62 0~ 32~40 34, =
C5 otherwise
Cy for k=0,1,6,7,8,9,14,15
P41 63 2 ~ 3 F417xk -
(5 otherwise
\
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Then,

H*(Tip,Ind [(kz)) = @ H (D124, iz 0 ad(z))

IEFlg\F/F/

— H* (02’ Z)(63)

H*(Ty3,Ind 1. (kz)) = EB H*(T'19,0, kiz 0 ad(x))
x€la3\I'/TY
= H*(C4, 7)™ @ H*(Cy, 7))
H*(Tsy,Ind [(k2)) = @D H*(Tssw, iz 0 ad(z))
Z€F34\F/F’
= H*(Cy, 7)™ @ H*(Cy, 7))
H*(Ta1,Ind [(kz)) = @  H*(Tara, kz 0 ad(z))
€l \I'/T/

= H*(C4,7)® @ H*(Cy, 7))

We do the same for the 0-cells.
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|\ /T Equivalent reps Lz
Cy for k=0,1,6,7,9,
P 62 0~38,2~3 g = 14,15
Cy otherwise
\
4
Cg for k=10,1,9
P 61 0~82~3~7 Loy =
Cy otherwise
\
(
Cg for k=10,1,8,9,17,
27,29, 33
Ps 59 0~32~40~55,2~3~T7 | T3,
C, for k = 54,60
\02 otherwise
(
Cyfor k=0,1,6,7,8,9,
14,15, 16,17,
19,21, 27,29,
P, 61 0~ 32~40,2~3 iy, =
30, 31, 33, 35,
37,41,42,44
Cy otherwise
\
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H*Ty,Ind [,(k2)) = € H*(Trahz0ad(z))

z€lM\I'/T’
= H*(Cy,2)" @ H*(Cy, 7))

H*(Ty,Ind [ (kz)) = €@  H*(Tau, kiz 0 ad(x))

x€l2\T'/TY
= H*(Cs,7)® @ H*(Cy, )

H*(Ts,Ind 1.(kz)) = @ H* (T34, iz 0 ad(x))

z€l3\T'/T’
= H*(C,2)® @ H*(Cy,2)? @ H*(Cy, 7)Y

H*(Ty,Ind [(kz)) = @ H*(Taw, kz 0 ad(x))

x€ly\I'/T’

_ H*(C4,Z)(22) oy H*(CQ,Z)(39)

In particular,

EY = € H*(I,Ind [ (k2)) ~ 7,/22*? @ 7./32"Y @ 7./475Y
0—cell P;

Ey?= € H*(Uy;,Ind [(kz)) >~ 7,/22%%) @ 7,/37% © 7./47.1?
1—cell P;;

Observe that, for fixed ¢,j and x € I;\I'/T", either I';zl" = T';;2I", or I';zl” =U
Lyl for y € I';;\I';zl”, and indeed, this information is given in the tables abovey.
For example, since I'yxol” = Ioas” = DaxrIY, but aoIY, 231" and z7I" are not equiv-
alent under I'yo, it follows that T'ozol” = I'gaolY UT 923" UT o271, For fixed x and
y, the map

vesy” + H' (T, Z) — H'(T

i,y °

i L)
is the restriction map in group cohomology, and if the vertex ¢ has edge ij entering
it, and edge il leaving it, then, again for fixed z, the map

H(ipZ)— P HTyyu.2)® @ HTuy2)is

y1 €L \Iixl’ y2€L\Djxl
J

Z (resifyl(z), —resﬁfw(z)) )
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Summing over all 0 and 1-cells, we have the map:

@ P D D — D D 0L
TE€(~\D)o w€l\I/TY Se(~M\D")1 yels\I/TY
We shall write d)”* in a more convenient form. Consider the following lattices A;

and A;;:

27, (63)

Ay :=(47) @ (27)®D) A
27,

Ay :=(62)® & (22)°%) Ags :=(62)D @ (22)

=
N
i

(42) =(2Z)"
(6Z) (62)®
=(62)® & (22)" @ (42)P & (22)D Ay :=(22)% @ (42)P @ (22)®)
1=(4Z) =(42,)®

47, (22 ( ) (39) 47,

=
W~
i
=
=
i

(QZ)(55)

Define:
A=A DA DA3D Ay and Agg = Ajo @ Aoz ® A3y ® Ay
Then,
&2 70 N,y 700 /4,

Consider the map d)* — A, : Z®%) @ 2250 — 7,250 and if W ¢ Z3*) @ 7250 Jet

pryeas (W) denote the projection of W onto the space Z(?%®). We have
ker(d?) = pryu (ker (dS? — Ay.))/Im A,

Recall the underlying Sage environment given in Subsection 2.2. We use the

following component maps to determine the kernel of the map dg’Q:

A ZZ(62) /A1 — Z(63) /A12 B ZZ(ﬁl)/AQ — Z(Gs) /A12
C ZZ(61)/A2 — Z(GQ)/Agg Z(59 /A — Z /A23
E 7Y /Ay — 752 | Ay, FFZOY /Ny — 72 /Ay,

G Z /Ay — 2 Ay H 2 Ay — 219 Ay
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We write the same letter (A,B,C,D,E,FF G H) for the corresponding matrix. The

matrix of d)"* takes the form

FF
H

o o QW

A 0
0 D 0
0 E
G 0
Proposition 2.3.5. There is a short exact sequence

0 — Z® — HX (I, ky) — (2/2)%) @ (2/4)19 @ (2/12)® — 0

Proof. Recall the exact sequence (2.19). A very slight modification of the Sage
programme (Appendix A.1) used to calculate H*(I", kg) in the proof of Proposition
2.2.2 gives

H*(~\D' kg) 2 70,

The programme described above yields

ker(d}?) = (Z/2)® & (2/4)"9 & (2/12).

2.4 Cuspidal cohomology

Suppose that T C I' is a subgroup of finite index. It is well known [22] that
the quotient 3-fold Yy := T\H is never compact. We can compactify Yy by adding
a boundary component at each cusp in such a way that the compactification is a
homotopy equivalence. If ¢ is a cusp of T, then the subgroup Y., which stabilizes the
cusp ¢, has an action on the complex numbers by translations and rotations. The
boundary component for the cusp ¢ is the quotient Y .\C. This kind of compactifi-
cation is known as the Borel-Serre method. Let Xy denote the compactification of
Yr.

Let P'(F) denote the projective line over F. The group I' acts naturally on F(®
and hence on P!(F). Tt is a classical result which was first observed by Bianchi and

proved by Hurwitz, in 1892, that if F_; is an imaginary quadratic field, then the
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size of the orbit space I'\P'(F_,) is equal to the class number of F_;. Hence the
set T\P!(F) is finite, and called the set of cusps of T. The number of boundary
components forming 0 Xy is indexed by the cusps of Y. Following the notation of [12],
for an element D € P'(F), let Bp denote its stabilizer in SLy(F). If ¢ is a cusp of

T, choose a representative D, € F® and define the groups
YT.=Bp,NT

and

v = @ . (2.20)

cET\P(F)
They are independent of the chosen representatives D.. In general, T./{£1} will
not be torsion-free. If it is, it is free abelian of rank 2 [35, p. 507].
Consider the long exact sequence in compactly-supported group cohomology as-

sociated to the pair (T, U(Y)):
o= HY(YT, M) — H(Y,M) - H(U(Y),M) = HY(T*, M) — -~ (2.21)
where H:(Y, M) = H'(Y,U(Y), M), and M is any T-module.

Definition 2.4.1. The cuspidal cohomology', H?,,,(T, M), is defined to be the kernel

of the restriction map H*(T, M) — H*(U(Y), M), or equivalently, is defined to be
the image of the map H*(Y, M) — H?*(T, M).

Definition 2.4.2. The Eisenstein cohomology, H%, (Y, M), is defined to be the quo-
tient H*(Y, M)/H?, (T, M) and is isomorphic to the image of the restriction map

cusp

H2(T, M) — H2(U(T), M).

Sequence (2.21) has a natural analogue in topology, and under favourable condi-
tions - rather than being an analogue - it is exactly the same. The analogue is the

long exact sequence in relative cohomology associated to the pair (X, 0Xy):
o= H( Xy, M) = HY( Xy, M) = H'(0Xr, M) = H™( Xy, M) — -+ (2.22)

where, again, H!(Xy, M) = HY(Xy,0Xy, M), and M is the local system on Xy
induced by the representation M. Recall that by construction, the embedding Yy —

L See Appendiz A.3 for why this definition is equivalent to the definition of cusp cohomology as
the image of the map (0.5) given in the Introduction.
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Xy is a homotopy invariance, and there is a spectral sequence (2.3) relating the
cohomology of Yy (and thus of Xy) to the cohomology of Y. In particular, if 6 is
invertible in M, then

If, for each cusp c of T, we knew that Y./{£1} were torsion-free, then the boundary
component S, in 0Xy associated to ¢ would be an Eilenberg-Maclane space for
T./{%1}, and we would be able to make the correspondence

H'(0Xx, M) =D H'(S, M) =@ H'(Y./{x1}, M) =H(U(Y), M)

c c

as long as 2 is invertible in M. In the general case, each Y. acts with fixed points
on the space S, and the spectral sequence (2.3) relates the cohomology of one with
the other. In the sequel, we shall assume that as well as 6, the size of the stabilizer
subgroups Y. s of cells § in S. are invertible in the coefficients M, in order to guarantee
that the exact sequences (2.21) and (2.22) will be the same. In particular, we shall

make use of the isomorphism
H' (0Xy,M) = H(U(Y), M) for all i >0

so that
H? (T, M) = ker{HQ(XT,M) — H2(8Xy,3\/[)}. (2.23)

cusp

2.4.1 Level one

Since the class number of F' is one, I' has one cusp; we can choose the represen-

tative of this unique cusp ¢ € I'\P'(F) to be oo := [}]. Then

b
' =B,.NI = ca€Z,be@
0 i

In the proof of Lemma 4 in the paper mentioned above [22], it is shown that, in this
case,

Xr=YrUTI',\C

That is,
0Xr =T \C (2.24)
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and I',\C is a 2-sphere, which we shall label 5.
Let H, = {(z,7) | z € C} be a plane in H, and identify it with C. The group
I' acts on H, and Bianchi-Humbert theory [16] gives the following rectangle for a

fundamental domain:
1 1
{zEC|0§|Rez|C§§, Oglngé}

In particular, I'y, acts (with fixed points) on H,, = O(HUP!(C)) and a fundamental

cellular domain is given by Su:

d'Ey Q4 12 Qs
@

El Ql a/El Q2

where,
o 1 0 . 1T —1 . —1 1—1 pe | o 1 1
0 —2 0 —2 0 1 0 —2 0 1

Up to I'w-equivalence, there are four O-cells, three 1-cells and one 2-cell. The 4
inequivalent vertices (shown on the diagram as dots) are given by Q1 := (0, 00), Q9 :=
(%,OO),Q?, = (% + %,oo),Q4 = (%,oo). The two horizontal edges along the top,
E, and d'E,, are identified via d’ (which fixes the vertex in the middle) and thus
have opposite orientation. The far left vertical edge Fj3 is identified with the far
right vertical edge ¢’ F3, and thus these edges have the same orientation. The two
horizontal edges along the bottom, F; and a'E;, are identified via a’ (which fixes the
vertex in the middle) and thus have opposite orientation.

The picture below shows the stabilizers of the cells. Note that the stabilizer of
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the 2-cell is {£1}.

O, = (d’) {:l:l} <C’> ~ O,

{£1}

{£1}

Let M be an R[I'l-module (hence an R[I'«]-module) for some commutative ring
R in which 2 and 3 are invertible. We shall make the additional assumption that

—Id acts trivially on M. We can use the spectral sequence

EYI(M)= @ H(Tws, M) = H" (T, M) (2.25)
0€(Soo)p

to calculate H?(I'y,, M). In this case, EY?(M) = 0 for ¢ > 0 and the cohomology of

I's is given by the cohomology of the complex
M<> @ M<Y> @ M</> @ M<t> B pp<—1> g Ap<1> g <> ) gyt (2.26)
With our chosen orientation, the boundary of the 2-cell is given by
El(l - a/) + EQ(l - d/) + Eg(l - 6/).

This implies that d}° is the map d;"(m; +mg +mg3) = (1 —a’)my + (1 — d')mg +
(1 — €')mg, so we have
H?*(Too, M) =ME8 /(1 = )M + (1 —d)M + (1 — ') M)
=M/(1-ad )M+ (1—-d)M+(1—-¢)M) (2.27)
In particular, if M = C is the trivial module, then H?*(T',,C) = C.

The cohomology of the complex (2.26) is also the cohomology of the space S, =
OXr, so we have an isomorphism H*(0Xt, M) = H(T's,, M). The map

H*(T',M) — H*(Too, M) (2.28)
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can be calculated using the original fundamental domain for I' in H. Suppose that

F is defined by
1 1 2 2
F=1(zr) €H : 0< [Re(z)le < 5,0 < [Im(2)le < g [ofR +* > 1

Then F is a fundamental domain for I'.

The intersection of F with the unit hemisphere, inside H, is the region enclosed

by the 4 points (—% — %, */75), (% — %, \/75), (% + %, \/75), (—% + %, */75) The intersection
of F with the boundary of H UP!(C) at oo gives the fundamental cellular domain

Sso for I's.
Observe that the projection of S, onto the bottom face of the fundamental
ﬁ)a (l ﬁ)? (% + 5 ﬁ)a (_% +

domain gives the region bounded by the points (—%, 5

2072 2072
%, \/75), and the matrix ({ ' ) maps one half of this rectangle to the other half, leaving
the line through the points (0,1) and (%, \/75) fixed. The resulting one quarter of the

bottom face is the fundamental cellular domain ~ \ D’ given in Section 2.1.

As a consequence, one can show that the map (2.28) is given by

H*(T, M) — H*(T, M)

T T T T 0 —1
m+(M12+M23+M34+M41)'_> 1_ m

1 0

+ (1= )M+ (1 —=d)M+(1—€)M).
Proposition 2.4.1.

dime H fusp

([, Ey5(C)) =0 or 1, and

dime H ?usp

(T, Ind 1. (kc) 2 E,5(C)) > 8.
Proof. Using Sage, we can calculate that:
HQ(FOO, EQyQ((C)) = (C, and
H*(To,Ind L (ke) 2 E,»,(C)) = C®

See Appendix A.2 for the code used to do this.
Recall (Proposition 2.2.5) that H?(T', Ey5(C)) = C, and H*(T,Ind . (kc) ®
FE55(C)) =2 C1). The result follows.



Chapter 2. Second cohomology 97

Remark 2.4.1. Tt is of interest to note that if H?2

cusp

(T, E52(C)) # 0, the 1-dimensional
space of Bianchi modular forms this would give rise to is exhausted by lifts of (twists
of) classical elliptic modular forms (defined over Q), or by forms which arise from
a quadratic extension of F' via automorphic induction (see [33] for details). In fact,
Rahm and Sengiin [33] have found this to be true for almost all Bianchi groups

SLy(0_4), and for almost all weights Ej, ;(C).

Remark 2.4.2. Recall that we calculated H?(T'o(p), Q) for some ideals p C O. It would
be interesting to know whether these cohomology classes are cuspidal or Eisenstein
(when they are nonzero). Sengiin has determined the dimension of HZ (T'o(p), Q)
in the following way.

Let p be a prime ideal in O of residue degree 1. Consider the exact sequence (see

(2.21)):

H'(To(p), Q) — H'(U(To(p)), Q) = HZ(To(p), Q) — Heyp(To(p), Q) — 0.

The group I'g(p) has two cusps. Sengiin has shown that for each cusp ¢, H'(Ty(p)., Q) =
0. This implies that H'(U(To(p)), Q) = 0, which in turn means that there is an iso-
morphism

HCQ(FO(p)7 @) = ngsp(FO(p)7 Q)

By Lefschetz duality, H2(To(p),Q) = H;(To(p),Q), and the latter group is the
abelianisation of I'g(p), denoted I'y(p)2. That is,

dimQ(HCQusp(FO(p)7 Q) = rank(ro(P)ab)-

In [15, p.51], it is shown that the prime ideal p of residue degree 1 with the
smallest norm which has an infinite abelianisation is p = (11 4 44). This means that

for each prime ideal p = (1 + 27), (1 4 44), (3 + 2¢) in our table in Section 2.2,

dimg (e, (To(p), Q) = 0.

We have calculated the cohomology of the group I'y, geometrically. It can also
be done algebraically. We have an explicit description of the group I'y,. Namely, '
is the group of matrices of the form (g a/i)l) where a € O* and 8 € O. If we let Uy,

be the unipotent subgroup of I'y, (i.e. Uy, = Up, NT'), then we have an extension

1 —Up — T —pus —1
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(where 4 is the multiplicative group of 4*® roots of unity) and a Hochschild-Serre

spectral sequence

H?(py, H1 Uy, M) = HP™9(To, M)
Again, since 271 € M, the spectral sequence collapses and the edge maps gives
isomorphisms

H'(Too, M) = H (Uyo, M) i >0

The group U, is free abelian and generated by €’ and f’ := (} ). The tensor product

of the two resolutions

0 — R[()] =5 R[(¢)] - R — 0

in which ¢ is the augmentation map, gives a resolution of Uy, and then it is clear

that the second cohomology is described by
H?*(Uso, M) 2 M/((1 — €)M + (1 — f)M) (2.29)

Note that equation (2.27) can be re-written as H?(T'o,, M) = Mr_; similarly, (2.29)
can be written as H?(Us,, M) = My, . Hence, to show that (2.27) and H?(Us,, M)A
are the same, it remains to observe that for any finite group GG, and any representation
V of G over Q,

VeV,

2.4.2 Level four

Theorem 2.4.2. Let I be the congruence subgroup I'(4)S La(Z). Then

H?, (T kg) = 0.

cusp

Theorem 2.4.2 shall be proved in a number of steps. The first step is the calcu-
lation of H*(U(T"), kg) where U(I") = €@ T, as defined in (2.20) above. To do

ceT"\PL(F)
this, we must determine the cusps of I".
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Lemma 2.4.3. A set of representatives for the cusps of I is given by

1 1 —1 21 —4

0 1 1 1 1+2

Proof. Since the class number of F' is 1, T’ acts transitively on P*(F), and we

can make the identification

['/Ty +— PY(F)

a b a
g= — g(00) = . (2.30)
c d c

We have seen that there is a set bijection:
I'\I' = SLy(Z/AZ)\S Lo (O /4) (2.31)
given by reducing the coefficients of a matrix in I"' modulo 4. The cusps of I are

therefore in one-to-one correspondence with elements in the double coset space

yes

SLy(Z/4Z0\SLo(0/4)/ 4 [T " | : aezazee0/sl,
0

which we shall write as
1 =z
< 1> SLy(Z/AZ)\SLy(0/4)/ c xe0/4
1
Note the identification
1 «
SLy(0/4)/ s x€e0/4y =
0 1

u Tz
cue (0/4),2€0/4 3 U :2€0/(242i),ue (0/4)*
z u
That is, since O/4 = (0/4)* U{xr, +ir} U{r? ir?} U{r3} U{0}, we must have that
ISLo(0/4)/{(§%) + 2 € O/4} =8%16+ 88 =192, and |SLy(0/4)/{(% %) :
a € ZJAZ, x € O/4}| = 192/4 = 48.
Let v = (9) € (0/4)?, and consider the stabilizer of v under the action of

SLy(Z/4) < i >, where an element i* €< i > acts as v — (*v, and SLy(Z/4) acts
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in the usual way. Then,

a b 0 0 a b
= for € SLy(Z/4)
d

c d 1 7% c

Sb=0and a=d==1.

That is, stabgr,z/az)<i>(v) = {£ (L) : ¢ € Z/4Z}, and has 8 elements, and so the
orbit of v has |SLy(Z/4) < i > |/8 = 24 elements.
Next consider () € (0/4)%. Similarly,

a b
= for € SLy(Z/4)
d

Sai+b=1i%and ¢i +d ="

That is, stabgr,z/az)<i>(v) = {£(§9),£ (% §)}, and has 4 elements, so the orbit
of v has |SLy(Z/4) < i > |/4 = 48 elements.

Using the same method, one can show that the orbit of (") has 48 elements, the
orbit of (%) has 48 elements, and that the orbit of (;;) has 24 elements. Further-
more, one can check that the elements (9),(1),(7%),(%), (1) are inequivalent
under the action of SLy(Z/47Z) < i >. The preimage of (1) under the map (2.31)
is (172:)- U

For each representative D. € {[9],[4],[7'],[%], [133;]}, we must now determine

the group I',. For notational convenience, let us denote the cusp [{] by x and [ﬂéz}

by 1 + 2i.
Claim.
l—ia —a t—1b 2—-0
=<+ , £ a=0(mod 4), b=1 (mod 4)
—a 1+ia —b  —i4b

The group I'; is generated by

1—4i —4 5 —4i\ [0 -1
4 144i) \ -4 -3 1 0

Proof of claim. The stabilizer of each cusp ¢ of I" is of the form 7',y ' NT”

where v - 00 = D, and T'y, is the stabilizer of co in I'. For D, = [%], such a 7y equals
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(i 79")- Let (g ,51) bein T, so p € {1,—1,4,—i} and a € O. Then

e . pwt—ia i —a—apt
Y Y=
0 pt —a p+ o
If p = =1, then
T o l—ia0 —a
v Y=
0 pt —a  1+ia
and if ("2 7%)) is in I”, then we must have a = 0 (mod 4).
If p =1, then
oo« . ——ia 2—«
v v =
0 pt —a i+t
and if (T77* 250 is in IV, then we must have 1 + o = 0 (mod 4), ie. a =
—1 (mod 4).
For ;1 = —i, the calculation is similar. The second part of the claim follows easily.

|

Lemma 2.4.4. The group I"_, is generated by

)

14+4i —4 3 —4i 0 1
4 1-4i) \=4i 5 ) \=1 0

The group T, is generated by

L [18 16 9 —16i\ [1-4i -8
oo 18 N\ 7 )\ 2 144

The group I"| ,o; is generated by

5+ 8i 16 —31 + 167 647

—1d ,
3—4i —3—8i 16 +12i 33 — 16i

J

Let us now make a new definition.
Definition 2.4.3. We call a cusp c for I essential if rg|r, = 1.

Proposition 2.4.5. The dimension, over Q, of H*(U(I"),kq) is the number of

essential cusps of T”.
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Proof. We observed above that for each cusp ¢, I", acts on S, and the spectral
sequence (2.3) relates their cohomology. In particular, since 2 is invertible in the

representation kg, we have
H' (T, ko) = H'(S,, ko) for all i > 0
Poincaré Duality for closed, orientable 2-dimensional manifolds implies that
H'(S,, ko) = Hy (S, kg)
This means we have an isomorphism
H*(I', ko) = Ho(T, kg).
Hence, we can identify H? with the I"-coinvariants in kg. That is,

HY(I, k) = Q ifrglr =1

0 otherwise

Taking the union over ¢, we find that the Q-dimension of H?(U(I"), kg) is the number

of essential cusps.

Our next step, then, is to determine which cusps of I'" are essential.
Lemma 2.4.6. All of the cusps of I'" are essential.

Proof. Consider the cusp i. If v € I'}, we must show that kg(y) = 1. Since kg
is a homomorphism, it is sufficient to show that kg is trivial on the generators of I';.

Now,

F
2

—_
+ |

o

~
|

VR

= 4Z,>Fby Proposition 1.2.5 (1)

(

:( -1 ( i ) by Proposition 1.2.5 (1)
( .
1
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Furthermore,
5 ( 4)
KQ
—43 3 JF

-1 4
_) <—) (—> by Proposition 1.2.5 (1)
3 /)p 3/

( by Proposition 1.2.5 (1)
F
9—

Lo .

=(—1)7 T by Lemma 1.2.6

Clearly,

Thus, the cusp 7 is essential.

Consider the cusp —1.

FQ = :
—4  1—44 1—4i)
— : by Proposition 1.2.5 (1)
- T 1tion L.z,
1—4i),\1—4i), y Fropositio
{ 2 2 2
- (1 - 4@'>F <1 — 42.>Fb3f Proposition 1.2.5 (1)
= 1.
-3 —4i 4
A -5
—41 5 s

—_
~—
~—

Obviously, kg (( % §
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Next, consider the cusp 2i. Clearly, kg(—Id) = 1. We have

1-8& —16 ( —4 )
RQ = .
4 148i L+8/p
-1 4 7
= = by P ition 1.2.5 (1
(1+8i>F(1+8i)F<5>F y Proposition (1)
=1.
9 —16¢ (—4@)
IQQ — - 5
4 -7 T /r
= (L) by Proposition 1.2.5 (1)
7).

= (—1)% by Lemma 1.2.6

1.
Note that ('23",7%,) ¢ I'(4). Rather,

1—4i =8 17—41 -8 10
-2 1+4 —4 -8 144 2 1

where (174 17%) € T(4), and (49) € SLy(Z). Thus,

17—4i -8 (-4—&')
KQ =
4 =8 144 1+4i ) p

Finally, take 1 4+ 2i. We can write

o+ 81 16 21 + 81 16 1 0
3—41 —=3-81 —-127 -3 -8 -1 1
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and,
21+ & 16 ( —12i >
RQ = ;
—12i —3—28i —3-8i/p
_( 31 )
3-8/
-(59).(5%)
—3-8i )\ 3-8 /L
_( —8i >
—3-8i/)p
_( 1+ >6
3-8/
=1
Moreover,
—31 + 167 644 (16 + 12z‘>
RQ — .
16 +12 33— 16 33 —16i/
B —211
- \33-16i /),
B —1i 7 3
-\ 33— 16¢ F\33 =160/, \ 33 — 161/
1345—1 7 3
= (1) ‘ .
N (33 — 164) 0 N(33 — 164) 0
-(5), (), 5), ()
5)9\2069/5\5/5\269/
B ( 7 3
269 /5 \269/ g
=1.
This concludes the proof. O

Recall the exact sequence (2.21):

res

o — H2(IV ko) — H* (I, ko) —> H*(U(I"), kg) — HZ (I, kg) — -+

We are interested in HZ, (I, kg) = ker{res : H*(I",kg) — H*(U(I"),rg)}. In
Section 2.2 we proved that the dimension of H?*(I”,kqg) is 5 (Proposition 2.2.2),
and we have just shown that H?(U(I"), kg) is of the same dimension. It remains to

observe, by Poincaré duality for the 3-dimensional manifold X1, that H3(T”, kg) = 0,
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to show that the restriction map is a surjection, and therefore an injection. That is,
HZ (I, kg) = 0. This concludes the proof of Theorem 2.4.2.

There is an alternative, geometric, way to prove Theorem 2.4.2, using the follow-

ing proposition. First we need a geometric version of Shapiro’s Lemma.

Lemma 2.4.7.

H*(Too, Ind 11(kq)) = @ H* (T, k).
¢ €I\ (F)

Proof. Consider Indp, (kg) as a I'ns-module. There is a I'y-isomorphism:
Indf (k) = @ Indg ngrrg-1 (R 0 ad(g)),
QGF/\F/FOO

where ad(g) is the automorphism of I given by
ad(g)(") == g~g.
Therefore,

H (Do, Td f () (T, @) Indiz, 1 (g 0 0d(9))
g€M\I'/Too

P FTwndi> v, (kgoad(g).  (2.32)

g€I"\I' /T

I

Since there are isomorphisms [7]
Ind§ (M) = IndS, 1 (gM) for groups G, K and a K-module M, and,
H*(gKg',M) = H*(K,M) for any g € G, K C G, and G-module M,
we have

Ind? ngrvg—1 (R 0 ad(g)) = Indg_lg“’imr,( o) and, (2.33)

1
H*(T, Indg_lgwgmr,(n@)) =~ H?(g ' Toog, Ind? 19 1 (Kg)). (2.34)



Chapter 2. Second cohomology 107

Putting (2.32), (2.33), and (2.34) together yields:

H* (oo, Ind [(kg)) = €D H*(Dao, Ind?_, [0 (5g))

geI"\I'/T'oo
~ — i S
gEM\[/Too
= H*(g7'TgNT', ko) by Lemma 2.1.7
gEF/\F/Foo
>~ H*(T",, ko) where g oo = ¢
gEF/\F/FOO
= H2<P/cv KZQ)‘
c€I"\PL(F)

To see the last isomorphism, recall the identification (2.30). This implies that
there is a bijective map
I"\I'/To —I'\P'(F) = {cusps of I}

o . a a b
g g 00 = where g =
c c

Proposition 2.4.8.

H?, (T ko) = Ker(H*(Xr, Ind(kg)) — H*(0Xt, Ind(kg))).

cusp

Proof. By Lemma 2.4.7, there is a commutative square:

= H2 Fla’i
HQ(FOO,IndE/(H@))Hcer%(m (e

~ lg

H*(0Xr, Indp (kg)) H*(0X1, ko)

in which the vertical arrows and the top horizontal arrows are isomorphisms,

hence

H*(0Xr, Indp (kg)) — H*(0X1, kg) (2.35)

is an isomorphism.

Recall the formula (2.23) for any finite index subgroup T C SLy(0). In particular,

H? (T, kg) & ker{ H*( X1, k) — H*(0X1, kg)}. (2.36)

cusp
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But, since 6 is invertible in kg, and by Lemma 2.1.7,
H*( X1, kg) = H* (I, ko) = H*(T, Indp (kg)) = H*(Xt, Indp (kg)). (2.37)
Equations (2.35), (2.36) and (2.37) give

H? (T ko) = Ker(H*(Xt, Ind(kg)) — H*(0Xt,Ind(kq))).

cusp

|

Proposition 2.4.8 allows us to check our calculation of H, fusp (I, ko) using a Sage

programme. We did this (Appendix C) and the result agrees with our original finding
that H2 (I", kg) = 0.

cusp



Chapter 3

A ramified genuine Hecke algebra

Recall the definition (1.11) of K,(4). We want to consider K,(4) as a subgroup
of SLy(Fy). Thus, if a € O, let a be its reduction modulo (4), and put

a b - -
K,(4) = a,b,¢,d € Z/AZ, ad — bc =1

Let K,(4) be the lift of K(4) to SLy(Fy).

Let Z be an automorphic representation of SLy(A) containing a non-zero vector
which is fixed by K,(4). The Hecke algebra H(SLy(Fy), Kx(4)) acts on the subspace
of K,(4)-fixed vectors. The complicated part of this Hecke algebra is the finite-
dimensional subalgebra H(SLy(0;), K, (4)). The aim of this chapter is twofold.

We shall completely describe the subalgebra H(SLy(O,), Kx(4)) and list its gen-
uine representations. Moreover, in the case that @ corresponds, via Theorem 1.4.15,
to a level one automorphic cuspidal representation of SLs(A), we shall determine
the action of H(SL(0,), K.(4)) on the [?,r(él)—ﬁxed vectors.

In brief summary, our results are as follows.

The “genuine quotient” of #(SLs(0,), Kx(4)) is 14-dimensional as a vector space
over C. As a ring, it is isomorphic to C® x M5(C)® (Theorems 3.3.7 and 3.3.8). In
particular, it has six 1-dimensional representations and two irreducible 2-dimensional
representations. We describe all these representations explicitly. If @ corresponds to
a level one cuspidal representation of SLs(A), then the subspace of l?ﬁ(ll)—ﬁxed vec-
tors is 2-dimensional: it is a sum of two 1-dimensional representations of H(SLy(0), K, (4))

(Theorem 3.4.4). We find which 1-dimensional representations arise in this way.
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Analogous results (over Q rather than Q(¢)) have been obtained by Loke and
Savin [28]; our approach is based on their method. However, since the calculations
in our case are rather long, we have used Sage, whereas their work is done entirely
by hand. One fundamental difference between the case over Q and over Q(¢) is that
there are two classes of “unramified” representation of SL(Q5) and only one class of
“unramified” representation of SLy(F},) . More precisely, since the centre of SLy(Q)
is Cy with generator {( ' %), 1}, there are two distinct genuine central characters
of an unramified representation. On the other hand, the centre of SLy(F}) is Co x Cy
with generators {( ' % ),1} and {(§9),—1}. If @, is a level one principal series
representation, then the value of the central character of @, is 1 on {(_01 _01) , 1}
since this element is in [?ﬂ(él). Thus there is a unique genuine central character (cf.

Remark 3.4.1 below).

3.1 Preliminaries

Suppose, for the moment, that GG is a locally compact group, and H is a compact

open subgroup.

Definition 3.1.1. Let H(G, H) denote the abelian group of functions given by:

H(G,H)={f:G— C| f(hgh') = f(g) for all h,h' € H,g € G; f is locally constant

and supported on only finitely many double cosets HgH }

It follows from the definition that every f € H(G,H) is a finite sum of char-
acteristic functions 1g4q of double cosets HgH. In what follows, we will blur the
distinction between the function 1y, and the double coset HgH.

We say that G commensurates H (written G ~ H) if for every g € G, gHg ' NH
has finite index in both gHg™! and H. If H is compact and open in G, then G
commensurates H (for any g € G, gHg™' N H is compact and open in H, so [H :
gHg '*NH] <oo,and [gHg™ ' : gHg *NH]=[H : gHg ' N HJ).
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Lemma 3.1.1. If g € GG, there are disjoint coset decompositions

d
HgH:UHozZ- with d = [H : HN g 'Hg]

=1

HgH = | ) 8;H with e = [H : HNgHg ™|

j=1

Note that d = e if G is unimodular.

Proof. Since [H : gHg ' N H] < 0o, we can write

d
H=|JHngHg")h

i=1
Therefore,

d
(97" Hg)H = | J(g~"Hg)h: and

i=1
d
HgH = | ] Hgh;
i=1
To prove that the single coset decomposition is disjoint, suppose that Hgh; = Hgh;.
Then hihj_1 € go'HgN H so i = j. The second relation is proved in the same way.
O
Lemma 3.1.1 allows us to define a multiplication on the group H(G, H). If
HaH,HBH € H(G,H), write HoH = UL Ha; and HBH = US_ Hj;. Then
we define H(G, H) x H(G,H) — H(G,H), (HoeH,HGH) — HaH « HBH by

HaH « HBH :Z c(v)HvH where

v

c(y) = number of pairs (7, j) such that Ha;8; = H~ for a fixed 7, (3.1)

and the sum is extended over all double cosets HyH C HaHPBH. Note that c(v)
is independent of the choice of representatives o, 3; and v. We can define a multi-
plication on the whole of H(G, H) by extending C-linearly. One can show that the

multiplication is associative and that the trivial double coset H1H is the identity.

Definition 3.1.2. The degree of a double coset, deg(HaH), is the number of single
cosets Hoy; inside HoH .
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We can extend this notion to the C-algebra H(G,H): for a general element
Z CkH OékH s let
k

deg (Z ckHozkH> :Z cr deg(HaH)

k k
Proposition 3.1.2. The function deg: H(G, H) — C is an algebra homomorphism.

We call H(G, H) the Hecke algebra of G with respect to H.

Suppose that Hy, Hy are two subgroups of G, such that H; < Hs. If g € G, we can
write an Ho-double coset HogHs as a (not necessarily disjoint) union of Hj-double
cosets. First, write Hy = U} H1g; = U], ¢;H;. Then,

HogH, =|_ ) HigigH,

i=1
n o n

= U U Higi99,;H.

j=14i=1

Thus we can define a map

H(G, Hy) — H(G, Hy) (3.2)
HQQHQ — ZZnglgngl (33)
j=1 i=1
The Hecke algebra we shall be interested in is the case where v is a finite place
of F, G = SLy(F,) and H = }?U is a compact open subgroup. In the case that IA(U is

maximal, we already know the structure of H(SLy(F,), [A(v)

Proposition 3.1.3. If K, = ﬁg((‘)v), then the “genuine quotient” of H(SLy(F,), K,)
1s a polynomial ring with one generator. In particular, the genuine quotient of

H(SLy(F,), [A(v) is finitely generated and commutative.

Proposition 3.1.3 is a special case of [29, Theorem 10.1].
Recall that if v is finite and odd, the extension

splits on the maximal compact subgroup SLs(0O,). By Proposition 3.1.3, the Hecke
algebra H(SLy(F,), ﬁg(ov)) is completely understood; in particular, its irreducible
representations are 1-dimensional. On the other hand, if v = 7, recall that (3.4) does
not split over SLy(0,), but rather over the smaller group K, (4). Thus we can form
H(SLy(0,), IAQT(ZL)), and apply the following;:
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Proposition 3.1.4 (Bernstein). If }?v 1s an arbitrary compact open subgroup, then

H(SLy(F,), [A(U) is finitely generated as a module over its centre.

We shall spend Sections 3.2 and 3.3 calculating H(SLy(0O,), IA(W(KL))

3.2 Calculation of H(SLy(0,), K:(4))

As a first approximation to H(SL(0,), Kx(4)), we shall calculate the algebra
H =H(SL:(O0x), Kr(4)).

For the remainder of this thesis, let G denote the group SLs(0/4), let H denote
the group SLy(Z/4), let T = {(%,%) | a € (0/4)*} be the diagonal subgroup of

0at

Gand let Z = {(59) | b € (0/4)*,b* = 1} be its centre. Note that G was used
to denote the group GLs in Chapter 1 and an arbitrary locally compact group in

Section 3.1; we hope the overlap in notation will not cause confusion.
Lemma 3.2.1. There is an isomorphism of Hecke algebras
H=H(G, H).
Proof. We saw (2.17) that there is a set bijection
SLy(0)/SLy(0,4)SLa(Z) = SLa(0/4)/SLa(Z/4).
On the other hand, it is clear that

SLy(0)/SLy(0,4)SLy(Z) = SLy(Ox)/SLa(Or, 4)SLo(Zs).

There is a normal chain of groups
H<ZH < TH. (3.5)

Define the elements

2+:7 0 1+ 2 0
t= €T, and z = A
0 2—1 0 1+2

Lemma 3.2.2. There are disjoint coset decompositions

TH=7HUZHt and /H=H UH:z.
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Proof. First note that |H| =6 8,|T| = 8 and |Z| = 4. Thus,

’TH _|TH| _ (T1JH| /[T H]) _ (T1/|T 0 H])
Zi| " |zH| ~ (2| ]|z H) ~ (2)]1Z0H)

_ 8% 2 _o
4 %2
We have
T +1 0 +: 0 +(1 + 2i) 0 +(2+1) 0
0o 1/ \o Fi/ 0 £(1+2)) \ 0 F2-9)
+: 0 +(2 4 1) 0
= Z U : )
0 T4 0 F(2—1)
and
-1
0 241 0 -1+ 0
= €z
0 —1 0 2—q 0 -1+
Hence,
i 0 244 0
Z =7
0 —1 0 2—4
For the second part of the lemma, observe that
ZH| | Z | 2] 4 5
H| |HnZz| |Hnzl 2 7
and
+(1 4 2i) 0
ZH= H U
0 +(1 4+ 2i)
Note that z is the only non-trivial representative of ZH/H since
1+2: 0 —(1+29) 0
=H
0 142 0 —(1+ 29)
|
The chain (3.5) induces maps (cf. (3.2))
H(G,TH) — H(G,ZH)
THgTH — ZHgZH U ZHtgZH U ZHgtZH U ZHtgtZH and (3.6)

H(G,ZH) — H(G, H)
ZHgZH v~ HgH U HgzH (3.7)
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It follows that the structure of H(G, H) as a vector space can be determined if we
know that of H(G,TH) and H(G,ZH). This is the method we employ.
In what follows, if x € GG is a matrix, we shall write Z for a double coset. Whether

this double coset is THxTH, ZHxZH or HxH, shall be clear from the context.

Proposition 3.2.3. The Hecke algebra H(G,TH) is commutative. It is 4-dimensional

as a vector space over C, with basis 1,&, 7,0 given by the following matrices:

1= ;o= SNES ;ou=

Its multiplication table is:

1 X y u

1 1 b y u

X X 642x+2y+2u x+2u  2x+4y+2u

y y x+2u 3+2y 2x+u

u u  2x+4y+2u 2x4+u 6+2x+2y+2u

Proof of Proposition 3.2.3. Recall from Lemma 2.2.3 that a set of left coset
representatives for G/H is given by the set {a;b; for 1 <4, j < 8} where {a;} are the
elements of SLy(0/4,1+1)/SL2(0/4,2) and {b;} are the elements of SLy(0/4,2 +
2i). Taking equivalence classes under 7', one can easily show that a set of coset
representatives for the quotient G/T'H is given by {c;d; for 1 <14, j < 4} where ¢; €

‘THquotientlmmmm’ below, and d; € ‘“THquotient3mmmm’ below.

THquotientimmmm = [mmmm([1,0,0,1]), mmmm([1,1+i,0,1]),

mmmm ( [1,1+i,1+i,142%i]), mmmm([1,0,1+i,1])]

THquotient3mmmm = [mmmm([1,0,0,1]), mmmm([1,2+2*i,0,1]),
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mmmm( [1,0,2+2%i,1]), mmmm([1,2+2%i,2+2%i,1])]

THsinglecosets = [c*d for c in THquotientlmmmm for d in THquotient3mmmm]

Therefore, |G/TH| = 16. We must now determine a set of representatives for
TH\G/TH. Let g; and gy belong to ‘THsinglecosets’. Then the double coset
THg,TH is equal to the double coset THg,TH if and only if there is an ele-
ment h € TH such that hg/TH = ¢g,TH; indeed, this happens if and only if
(hg1)'g2 € TH.

We claim that a set of representatives for TH\G/T H is given by:

The following Sage check:

def leftrep(g):
ginverse = g.adjoint ()
for x in THsinglecosets:
if ginversexx in TH:

return Xx

returned, for example, that

1 73 1 0
TH TH=TH TH and
0 1
1 « 1 —m 1 0
TH TH=TH TH=TH TH.
01 0 1 T 1

Finally, we can check that we have the correct number of double cosets in the
space TH\G/TH by checking the degree of each double coset. By Lemma 3.1.1,
deg(THgTH) = [TH : THN g 'THg|. The following algorithm:

x = mmmm([1,1+1i,0,1])
y = mmmm([1,2+2%i,0,1])
u = mmmm([1,1+i,2+2%i,1])

THdoublecosets = [mmmm([1,0,0,1]), x,y,ul
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for g in THdoublecosets:
ginverse = g.adjoint()
c=0
for h in TH:
test = ginversexhxg
if test in TH:
c = c+l
degree = (4%48)/c

print([g, degree])

gave the output:
1 61 31 ;6
1 1 1

which verifies the claim. Hence we have shown that H(G,TH) is a 4-dimensional
vector space with basis 1, Z, §, @.
By the proof of Lemma 3.1.1, we know that a double coset can be written as a

disjoint union of single right cosets
THgTH =|_JTHgh; where h; € TH/(TH N gTHg™")

so to multiply the double cosets, we must find specific representatives for TH/(THN
gTHg™') for each representative g in TH\G/TH. Again using Sage, we found the

following data:

6
THxTH = U THxh; for

i=1

hze ) 9 ) ) ) ) ) . ;

3
THyTH =| | THyh; for

j=1

hj € , : :
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and

6
THuTH = U T Huh; for

=1

h/z € ) ) ? ) ?
01 0 — 1 0 1 0 T —1 11
Recall the definition of multiplication in the Hecke algebra (3.1). The following

code multiplies the double cosets:

righthforx = [mmmm([1,0,0,1]) ,mmmm([1,0,1,1]) ,mmmm([i,0,0,-i1),
mmmm ([1,1,1,0]) ,mmmm([1,-1,1,0]) ,mmmm([i,0,i,-i])]
righthfory = [mmmm([1,0,0,1]) ,mmmm([1,0,1,1]) ,mmmm([1,-1,1,0])]
righthforu = [mmmm([1,0,0,1]) ,mmmm([i,0,0,-i]) ,mmmm([0,i,i,0]),
mmmm ( [0,-1,1,0]) ,mmmm([i,0,1i,-1]) ,mmmm([1,0,1,1])]

for hl in righthforx:
for h2 in righthfory:
answer = x¥hlxy*xh2
for b in TH:
for jj in range(4):
if mmmm(b*answer) == THdoublecosets[jj]:

print(jj)
For example, the above code, as written, gave the output [1,3,3]. That is,
Txy=1+2u

as claimed. The other relations were calculated in the same fashion. ]

Observe that inside H(G, T H) we have the ring C[g]/(9*—29—3) = C[g]/(g+1)&®
Cly]/ (g — 3). It follows that the eigenvalues of § on any representation of H(G, T H)
are —1 and 3. Moreover, since H(G,TH) is commutative, all of its irreducible
(complex) representations are 1-dimensional. In fact, its representation theory can

be described by the following character table.
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X y u
x1 2 -1 -2
X2 -2 -1 2
x3s 6 3 6
Xa 2 3 -2

Proposition 3.2.3, as well as the character table above, completely describes

H(G,TH). We turn now to the Hecke algebra H (G, ZH).

Define new matrices:

tr =t*x,

Tt =T * 1,

tat =t xx *1,

ty =tx*y,

tu =1 *u.

Proposition 3.2.4. The Hecke algebra H(G, ZH) is 10-dimensional as a vector

space over C, with basis

{1,t, 2, tx, xt, tot, , ty, 4, tu}

The algebra H(G, ZH) is non-commutative. Its multiplication table is:
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mg+ 29 +92g + fig+9  ng+9rig + 2 + Mg +19  wig+xg+n ;g +1rg+ 0 n+ag+ i g +an+fig m+gxg+fig rig+n+afic oo gn
ng +9x9g + g+ 4fig +19 g +wg +axg +Aig+9 g+ aig -+ wg v +n e+ apg+ g xg+n+fi n+xig+fic g t+an+fig o mo o onon
xg + 3z + 1 1Tg + g + n fic+¢ 1€ + Mg m+ n+x n+ 3] m+9x i i fi
TIG + TG + T8 + TG + N Mg + 1€ €+ fig n+x m+ a7 m+ g n + 9] o i fi
xg +n +9fig 1w + 9 + fig m+ 3z n+x fi +m 198 + 1€ Mi+n e+ ¢ ry ry T
g + 9 + fig 1137 + 1+ Mg n+ 327 m+ xq Mi+n TG + € fi +n g +1¢ r g g
m + gy + fig n + xg + g n+x m o+ g 1237 + 1€ fi+n 9 + ¢ #Wi+n 1wy xp 1
n +329g + g m+ g + fig m+ n+3x} g + € it g + 1€ fi+n woox o
n m fi i 1 77 z ] T 12 1
m n " fi 17 7T ) x 701 1
m n i fi 173 1T x3 x 101
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Proof of Proposition 3.2.4. As mentioned above, the vector space structure
of H(G,ZH) can be computed using the structure of H(G,TH). Recall (3.6) that

each T'H-double coset can be written as a union of Z H-double cosets: if g € G, then
THgTH =ZHgZHU ZHtgZH U ZHgtZH U ZHtgtZH

We must determine such decompositions for all the double cosets in H(G,TH). It

is straightforward to show that there are disjoint unions:

TH = ZH U ZHt (3.8)
THyTH = HZyHZ U HZytHZ (3.9)
THxTH = HZzHZ U HZxtHZ U HZta HZ U HZtatHZ (3.10)
THuTH = HZuHZ U HZtull Z (3.11)

For example, we know a priori, that THyT'H = ZHyZH U ZHtyZH J ZHytZH U
ZHtytZH. However, in G, yt = ty and so tyt = y. Thus THyTH = ZHyZH U
ZHtyZH. Suppose that ZHyZH = ZHtyZH. Then there must be hy,hy € H
such that y = hyztyhs. However, if we reduce the matrices in Z modulo 73, we are
left with {£Id}; reducing the matrices in H modulo 7® does nothing. On the other
hand,

240 242 —i 0 \
ty = = (mod 7°) and
0 2—1 0 =2
1 242 10
y = = (mod 7*),
0 1 01

and there are no elements hy,hy € H such that hityhs = y. Thus our original
assumption was incorrect: ZHyZH is not equal to ZHtyZ H.

Decompositions (3.8)-(3.11) yield the 10-dimensional basis of H(G,ZH). The
algebra structure can be computed using minor modifications of the code given in
the proof of Proposition 3.2.3 (see Appendix B.1). The non-commutativity is clear

from the multiplication table.
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Finally, we shall calculate H = H (G, H). Define

tz =1x%z,
Yz =y *z,
ytz =y * tz.

Theorem 3.2.5. The Hecke algebra H is non-commutative. It is 14-dimensional as

a vector space, with basis the set

~

(1,2, tz, &, ot to, tat, §, 4z, yt, ytz, 4, ut}.

Overleaf is its multiplication table.
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Proof of Theorem 3.2.5. Note that, since HZ = HU Hz, if g € H(G,ZH),
then either

HZgHZ =HgH, or there is a disjoint union,
HZgHZ =HgH U HgzH.
One can show that if ¢ = u,ut, txt, x, tx, xt, then HZgHZ = HgH, whereas for

g =1,y,yt,t we have a disjoint union HZgHZ = HgH U HgzH. In other words,

‘H is 14-dimensional as a C-vector space. To see this, first observe that

HZgHZ = HgH = HZgtHZ = HgtH, (3.12)

HZgHZ = HgH = HZtgHZ = HtgH

HZgHZ = HgH = HZtgtHZ = HtgtH.
Indeed, suppose that HZgHZ = HgH. Then, HZgtHZ = HZgHtZ = HZgHZt =
HgHt = HgtH. This proves (3.12). The other two relations follow from the same
arguments. Hence, to prove that HZgHZ = HgH for g = u,ut,txt, x, tx, xt, it is
sufficient to show HZgHZ = HgH for g = u,x. Observe, moreover, that

HZgHZ = HgH < 3 hy, ho € H such that g = hyzghs.

Suppose that g = u. Then

1+20 —1—1
2u =
2421 1+

Put hy = (971),ha = (1 ). We have

0 —1 1+2i —1—1 -1 -1 1 242
hizuhe = = = u.
1 1 242 1+ 1 0 1+ 1
Now let g = .
1+2i —1—1
zr =
0 1+ 2

Put hy = (23 %), ha = (19). We have

hizzhy = = =x.
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On the other hand, suppose that g = y, and suppose that there exist h; = (¢ 5)
and hy' = (; fl), so that y = hyzyhy. Then

1420 242\ (1 2421\
Looag2) oo )
That is,
o b\ (1420 2420\ (1 242 (e f
¢ d 0 1+2) \o 1 g h
al+20) a2+20)+b1+2))  [edg@+20) f+h(2+2i)
T eso) et raaron) g h

=c(l+2i)=g= c=g=0or 2,

=e=a(l+2i)= a=e=0or2.

Hence, we get a contradiction, so HZyHZ + HyH.

In Sage, we define the basis of double cosets by

Hdoublecosets = [mmmm([1,0,0,1]),z,t,t*z,x,x*t,t*x,t*x*t,y,y*z,

y*t,yxt*z,u,ukxt]

To determine the structure of H as an algebra, we must write each H-double coset
as a disjoint union of single H-cosets. There are two cases. If ZHgZH = HgH, and
ZHgZH = U} | ZHgh;, then since ZH = H U Hz, we have

HgH =|_) ZHgh;

i=1

:O(H U Hz)gh;

i=1
:Othi U Onghi.
i=1 i=1

For example, ZHxZH = U}_|ZHzh;, so HtH = U}_Hxh; UU}_ Hzzh;. If, on the
other hand, ZHgZH # HgH, and ZHgZH = U}_,ZHgh;, then
HgH =|_JHghi.
i=1
Thus the job of finding representatives for H-single cosets is done: the most we
need to do is to multiply the matrices in “littlehdashforg” by z on the left, to form
“righthforg”:
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righthforxl = [mmmm([1,0,0,1]),mmmm([1,1,1,2]) ,mmmm([1,0,1,1]),
z,zxmmmm([1,1,1,2]) ,z*mmmm([1,0,1,1]1)]

righthforxtl = [mmmm([1,0,0,1]) ,mmmm([1,1,1,2]) ,mmmm([1,0,1,1]),
z,zxmmmm([1,1,1,2]) ,z*mmmm([1,0,1,1])]

righthfortxl = [mmmm([1,0,0,1]1) ,mmmm([1,1,1,2]) ,mmmm([1,0,1,1]),
z,zxmmmm([1,1,1,2]) ,z*mmmm([1,0,1,1]1)]

righthfortxtl = [mmmm([1,0,0,1]) ,mmmm([1,1,1,2]),mmmm([1,0,1,1]),
z,zxmmmm([1,1,1,2]) ,z*mmmm([1,0,1,1])]

righthforyl = [mmmm([1,0,0,1]1) ,mmmm([1,0,1,1]) ,mmmm([1,-1,1,0])]

righthforyzl = righthforyl

righthforytl = righthforyl

righthforytzl = righthforyl

righthforul = [mmmm([1,0,0,1]),mmmm([1,1,0,1]) ,mmmm([1,-1,1,0]),

mmmm ([0,-1,1,0]) ,mmmm([1,0,1,1]) ,mmmm([0,-1,1,1]),z,z+mmmm([1,1,0,1]),
zmmmm ([1,-1,1,0]) ,z*mmmm ([0,-1,1,0]) ,z+mmmm ([1,0,1,1]),
z+mmmm ( [0,-1,1,1]1)]

righthfortul =[mmmm([1,0,0,1]),mmmm([1,1,0,1]) ,mmmm([1,-1,1,0]),

mmmm ( [0,-1,1,0]) ,mmmm([1,0,1,1]) ,mmmm([0,-1,1,1]),

z,z*mmmm( [1,1,0,1]) ,z*mmmm ([1,-1,1,0]) , z*mmmm ( [0,-1,1,0]),

zxmmmm ([1,0,1,1]) ,z*mmmm([0,-1,1,1])]

Note that to check we have the correct number of single H-cosets inside each
double H-coset, we can use a “degree” argument as exemplified in Appendix B.1.

The following multiplies the double cosets:

for hl in righthforxil:
for h2 in righthforyl:
answer = x¥hlxy*xh2
for b in H:
for jj in range(14):
if mmmm(b*answer) == Hdoublecosets[jj]:

print(jj)
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The above example algorithm gave the output [7,12]. That is, in H,

&% = tat + 4.

3.3 Calculation of the genuine quotient of

H(ST(05), K-(4))

In Section 3.2, we determined the Hecke algebra H(SLo(0,), K:(4)). In this
section, we shall modify the method to calculate the metaplectic counterpart of this:
H(SLy(O,), Kx(4)). As in the previous section, we shall show that this Hecke algebra
is isomorphic to the Hecke algebra of a pair of finite groups.

We shall define a central extension G of G = SLy(0,/(7%)) and a lift H of
the subgroup H = SLo(Z/4Z) of G to G. With this notation, we will have an

isomorphism

H(SL2(0,), Kr(4))

Il

H(G, H). (3.13)

3.3.1 An explicit 2-cocycle defined modulo 4

To construct G, we use the following:

Lemma 3.3.1. Let 0, € H*(SLy(Fy), o) be the cohomology class corresponding to
the metaplectic cover of SLy(Fy). Then there is an element ¥ € H?*(G, ug) such that
the inflation of ¥ to SLy(0y) is equal to the restriction of o to SLa(Oy).

The proof of Lemma 3.3.1 is the realm of K-theory: it follows from the fact that
K5(0,) = Ky(Fy), as well as the result that the map

K3(05) — K3(O0</ (7))

is surjective. This can be gleaned from [14], although we shall give a new proof of
Lemma 3.3.1 below in Proposition 3.3.2 since we require an explicit formula for the

cocycle X.
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Counsider the extension
1 — pg — SLy(0,) 2 SLy(0,) — 1, (3.14)

which is the restriction to SLs(O) of the extension (1.12) we saw in Chapter 1.
Recall that 3 is the associated normalised cocycle. Suppose that 3, corresponds to
the section 7. That is, suppose that 7 is a map 7 : SLy(0,) — SLy(0,) and, for all
9.9 € SLa(0x),

Be(9,9') = 7(9)7(g")7(99) (3.15)
By Proposition 1.1.4, 7 restricted to K(4) is a homomorphism.

Let SLy(O,,4) denote the subgroup of SLs(O,) whose elements are congruent to
the identity modulo (7). For any g € SLy(0,), consider the map

Xy SLo(0r,4) — pio
ar— 7(g " ag)(T(9) (@) (9)) "

1

This makes sense because 7(g 'ag) and 7(g)"*7(a)7(g) have the same image under

p. Using (3.15), we can re-write X, as

Br(97", ag)Br(a, g)
Brx(g71, 9)

Let R be a set of (left) representatives for the group SLg(O,4) in SLy(O,). If

Xy(a) =

g € SLy(0,), decompose it as g = rh where r € R, and h € SLy(0,,4).

Definition 3.3.1. Let S be the map S : SLy(0;) — SLy(0,) given by
S(9) = {g, Bx(r,h)}
where g =rh forr € R and h € SLy(0,,4). Define a cocycle 3 by

> SLQ(OW) X SLQ(OW) — M2

(g1, 92) = S(91)5(g2)S(g192) " for all g1, ga € SLa(O,).

Since the cocycles 8, and ¥ determine the same extension (3.14), they differ by
a 2-coboundary which we shall call 0S,:

%) = Br - 0S, where 95 (g1,92) = S(91)Sx(92)Sx(9192) " for all g1, go € SLy(05),
where S.(g) = B,(r,h) when g =rh for r € R,h € SLy(0,,4).
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Proposition 3.3.2. Suppose that X,(«) = 1 for all g € SLy(0;) and for all o €
SLy(0r,4). Then, the cocycle ¥ is defined on the group SLy(O.)/SLy(Oy,4) =
SLy(0/4). That is,

¥(g1,92) = X(g1, 65) if g1 = g1 (mod 4) and g2 = g5 (mod 4).
Thus ¥ can be regarded as a 2-cocycle on the finite group G.

Proof. Observe that the function X, can be re-written:
X,(a) = {a,1}9{a?, 1} where o = g 'ag.
If X,(a)=1forall g € SLy(O,) and for all o € SLy(0,4), then
{a?,1} = {a, 1}9. (3.16)

If g € SLy(0,), write g = rh for r € R and h € SLy(0,,4), and recall that
S(g) = {g, Bx(r,R)}. If v € SLy(O,,4), then

S(gv) ={97, Bx(r, hy)} since gy = r(hv),
={9, Bx(ry b)) Hv: 1311, Bx(9,7) '}
={9, Bx(rh, 1) Bx (1, 1) B (R, 7)™ v, TH1, Be(9,7) ™'} by the cocycle identity (1.1)
={9, Bx(9,7) B (r, )}, 1H{1, Br(g,7) "} since Br(h,7) =1
={9, Bx(9:7)Bx(r, W)L, Bx(g,7) " H: 13
={9, Bx(r, )}, 1}
=5(9)5(7).

On the other hand,

S(vg) =S(g7?) = S(g9){~+, 1}
=5(g){~,1}¥ by (3.16)
=5(9)S(9)" {7, 1}5(9)
={7,1}5(9)
=5(7)5(9)-
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Observe that if ¢ = ¢’ (mod 4) then ¢’ = gy for some v € SLy(0,,4), and
g = ~'g for some v € SLy(0,,4). Thus, if 1,90 € SL2(0,) and v € SLy(0,,4),
then

X(v91,92) =S(791)5(92) S (vg192) "
={7, 1}5(91)S(92)({, 1}5(g192)) "
={7.1}5(91)5(92)S(9192) " {7, 1}~
={7, J2(g1, 92) {7, 1}
).

:E(gla 92

%91, 927) =5(91)5(927)S (g1927)
S(91)S(g2){7, 1}(S(g192){7. 1}) 7"
S(91)S(g2){7, 1H{7, 1} 'S (g192) "
(

= 91,92)

To finish the proof of Proposition 3.3.2, we must show that the function X ()
is identically 1 for all g € SLy(0,) and all & € SLy(O,,4). To prove this, we need a

further result:

Theorem 3.3.3. Let o be a 1-cocycle on a group L generated by ly,- -+ ,l,. Ifo(l;) =
1 for all i, then 0 = 1.

One can prove Theorem 3.3.3 by induction.

Lemma 3.3.4. The function X, () takes the value 1 at all @ € SLy(Or,4) and all
g € SLQ(O,r)

Proof. We will use the following properties of the function X, («):

1. As a function of o, X, € Hom(SLo(Or,4), pt2). Indeed, if ay, g € SLy(O0r,4),
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a simple proof gives:

Xy(araz) =7((ara2)?){T (1)@}
(o) {T(a12)” (9)}_1

(

(a1
T(af)r(ag){r(anaz) @}

(

(

()7 () {T(a1)" 7 (az)™ 9}
=7(0f) Xy () {7 (1)@}
=X, (1) Xy(a)

2. As a function of g, X, € Z'(SLy(0,), Hom(SLs(O,,4), 2)) is a 1-cocycle;
explicitly,
Xgrg (@) = Xy, (@) X, ().

If ag, a9 € SLy(O,,4), then by property (2),
Kgon (@2) = Xy(a9) Xo, (97 a2g) = Xg(aa). (3.17)

Recall that in Section 1.1, B, was used to denote the Borel subgroup of GLy(F}).
Suppose that b € B, N SLy(0,). Then Xy(a) = 1 for all o € SLy(O0,,4). Hence by

property (2),
Xop(a) = Xy(a). (3.18)

Furthermore, if o = ap (mod 7%): that is, if aja5 " € SLy(O4, 7%), then
X,(aq) = X, (az2) by part (4) of Proposition 1.1.1. (3.19)

Equation (3.17) shows that is it sufficient to prove that X,(«) is trivial for ¢ in
the coset space G = SLy(0,)/SLa2(0,4). Observe that X, is still a 1-cocycle on G:
if g1, 92 € SLQ(OW) and a1, (g, 6 € SLQ(OT‘—,Z.L),

Xglangaz (5) :Xglgé _1)0[10[2 (5)
:Xglgga—h (5)
=X, (5)Xgéa—1> (B9)
=X, (8) X ((87))
=Xg, (B) X, (B7)

:Xg1a1 (B)ngaz (ﬁglm )
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Let B(O/4) be the subgroup of G defined by:

B(0/4) = Zb ae(0/4),be0/i

a—l

The group G is generated by B(0/4) and the matrix go = (9 ;'). Thus, by Theo-
rem 3.3.3 and equations (3.17) - (3.19), it is sufficient to show that X, («) is trivial for
g = go, and for all a; in a set of generators for the group SLy(Oy, 1) /SLy(O,, 75).

A set of generators ay, - -, ag for the abelian group SLy(O,71)/SLy(O,, 79) is

given by:
1+ 7%+ in® 76 1+ ix* — xS 76
a1 = , Olg = ;
—7 1 — 7%+ in® —76 1 —in* —in®
1 7t 1 ar? 1 0 1 0
a3 = y Qg = , 05 = , g =
0 1 0 1 | it 1

a b
Let a = be a general element of SLy(O,,7)/SLy(O,, 7).
d

1

Xy () = if c#£0,b#0, and
() (a, )2 (b, d)x (c, d)st T
1
X, () = when ¢ # 0,b =0, and
90( ) (CL, d)W(C, d)7lr+v(c)
1
Xy (@) =————— when ¢ = 0.

(b, d)x(a, 03"
However, if both ¢ # 0 and b # 0, then both b and ¢ are squares; if ¢ £ 0 but b =0
then both @ and d equal 1; if ¢ = 0 then again, a = d = 1. Thus X (o) =1 for all
1< <6.

Therefore, Lemma 3.3.4, and hence Proposition 3.3.2, are proved.

Observe that we have constructed an extension
1 — g — G — G —1, (3.20)

with an associated 2-cocycle X.
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3.3.2 Calculation of the genuine quotient

Consider the double cosets H{1,1}H and H{1,—1}H. The latter generates the
group ring C[H{1, —1}H, H{1,1}H] which is easily seen to be contained in the centre

of H(G, H ). In fact, there is an isomorphism

ClH{1,—-1}H,H{1,1}H] —C & C

H{1,—1}H —(1,-1)

Schur’s Lemma [8, p. 430] implies that on any irreducible (complex) representation of
H(G, H), the double coset H{1, —1}H acts as 1 or —1. We shall define the genuine
Hecke algebra H(G, ﬁ)gen to be the quotient of (G, H) in which H{1,—1}H is
identified with the scalar —1 € C. That is,

H(C, H)gen = H(G, H)/ (ﬁ{g, —1}H + H{g, 1}1?) .

Thus in H(G, ﬁ)gen, ﬁ{g, —1}?[ = —ﬁ]{g, l}ﬁ If we write g for the double coset
fl{g, 1}ﬁ, then —¢ shall mean ff{g, —1}?[.
Similarly, put

H = H(ST3(05), Kx(4)/ (Re(4){g. ~1}RA(4) + Re(4){g. 1} (4))

The right-hand side is the quotient of H (SLs(0,), K. (4)) in which K, (4){1, =1} K, (4)

is identified with —1. In analogy with Lemma 3.2.1, we have an isomorphism of rings

1%

H = H(G, H)gen.

In this section, we shall calculate H.
Recall the extension (3.20). Let p be the map G — G. The pre-image of a double

coset HgH C G is a union
p \(HgH) = H{g,1}H U H{g, ~1}H. (3.21)
Note that, a priori, the union may or may not be disjoint. However,

Lemma 3.3.5. For each g in a set of representatives for H\G/H, the union (3.21)

18 disjoint.
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Proof. For each g € GG, there are two cases to consider. Either,

H{g,—1}H = H{g,1}H, or

Now, ?[{g, —1}?] = ?[{g, 1}[? if and only if {g,—1} € ff{g, 1}[/1\7 We can write:

H{g,1}H = {{h,1}{g, 1}{W,1} :h, W € H}
= {{hg,X(h,g){h' 1} :h,h' € H}
= {{hgh',X(h,9)X(hg, 1)} :h,h' € H}

Hence {g,—1} € H{g, 1}H if:
there is an h € H N gHg " such that X(h, g)X(hg,g 'h'g) = —1. (3.22)
Recall the environment:

F.<i> = NumberField(x"2+1)

R = F.ring_of_integers()

pi = F.ideal(1+i)

k = R.residue_field(pi,’b’)

kk = R.quotient_ring(2,’b’)

kkk = R.quotient_ring(2*pi,’b’)
kkkk = R.quotient_ring(4,’b’)
kkkkk = R.quotient_ring(4x*pi,’b’)
M

MatrixSpace(F,2)

m = MatrixSpace(k,2)
mm = MatrixSpace(kk,2)
mmm = MatrixSpace (kkk,?2)

mmmm = MatrixSpace (kkkk,2)

The following four algorithms calculate the Hilbert symbol (z,y), for two integral
elements z,y € O,. The first, “wild hilbert symbol pi”, takes an argument x € F'*,
and produces the symbol (7, z),. The second, “wild hilbert symbol i”, takes an
argument x € F*  and gives the output (i,2),. The third, “wild hilbert symbol
odd”, is defined for two odd elements x,y € F*, and the fourth, “wild hilbert

symbol”, simply assumes that x and y are in F'*.
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def

def

def

def

wild_hilbert_symbol_pi(x):

val = x.valuation(pi)

newx x*x(1+1i) " -val

test kkk (newx)
while test != 1:

newx = newx *i

test = kkk(newx)
a = newx.trace()/2
b = (newx*-i).trace()/2

return (-1)"((a-b-b~2-1)/4)

wild_hilbert_symbol_i(x):
val = x.valuation(pi)
newx = x*x(1+i)~-val

return (-1) " ((newx.norm()-1)/4)

wild_hilbert_symbol_odd(x,y):
if kk(x) == kk(i):

templ = wild_hilbert_symbol_i(y)
else:

templ =1
if kk(y) == kk(i):

temp2 = wild_hilbert_symbol_i(x)
else:

temp2 = 1

return templ*temp2

wild_hilbert_symbol(x,y):

valx = x.valuation(pi)

valy = y.valuation(pi)

oddx x*(1+1) "-valx

oddy = y*(1+i)~-valy
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templ = wild_hilbert_symbol_pi(oddx) “valy
temp2 = wild_hilbert_symbol_pi(oddy) “valx
temp3 = wild_hilbert_symbol_odd(oddx, oddy)

return templ*temp2*temp3

Recall that if g € SLy(0O,), we can decompose it as g = rh where r belongs to a
set of representatives for SLy(O0,)/SLy(O0r,4) and h € SLy(O,,4). Since the section

S corresponding to the cocycle ¥ is defined by

S(g) = {9, Bx(r, h)},

it is necessary to implement both the decomposition of a general element g and the
cocycle 8. This we do below. For g € SLy(0,), “S decomposition(g)” returns a
decomposition g = rep x v where “rep” is a representative of the congruency class of

g modulo 4, and 7 is in SLy(O,4).

congruencequotientOm = [m([1,0,0,1]),m([0,1,1,0]),m([1,1,0,11),
m([1,0,1,1]),m([1,1,1,0]),m([0,1,1,1])]

congruencequotientimm = [mm([1,0,0,1]) ,mm([1, (1+i),0,1]),
mm([1,0, (1+1),1]) ,mm([1, (1+1), (1+1),1]),

mm ([1+(1+1) , (1+1), (1+1) , 1+ (1+1) 1) ,mm([1+(1+1),0,0,1+(1+1)]),
mm ([1+(1+1),0, (1+1) ,1+(1+1) 1) ,mm ([1+(1+i), (1+i),0,1+(1+i)])]

congruencequotient2mmm = [mmm([1,0,0,1]),mmm([1, (1+i)~2,0,11),
mmm ([1,0, (1+1)°2,1]) ,mmm([1, (1+i) "2, (1+i)"2,1]),

mmm ( [1+(1+1) 72, (1+1) "2, (1+1) 72,1+ (1+i) "2]),

mmm ( [1+(1+i)~2,0,0,1+(1+1)"2]),

mmm ( [1+(1+1i)~2,0, (1+1i)~2,1+(1+i)"2]),

mmm ( [1+(1+1) "2, (1+1)72,0,1+(1+1i)"2])]

congruencequotient3mmmm = [mmmm([1,0,0,1]) ,mmmm([1,(1+i)"3,0,1]),
mmmm ( [1,0, (1+i)~3,1]) ,mmmm([1, (1+i) "3, (1+i)"~3,1]),
mmmm ( [1+(1+i) "3, (1+i) "3, (1+i) ~3,1+(1+i) ~3]),
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mmmm ( [1+(1+1)~3,0,0,1+(1+1)"3]),
mmmm ( [1+(1+1) 3,0, (1+i)"3,1+(1+i)"3]),
mmmm ( [1+(1+1) "3, (1+1)°3,0,1+(1+i) "31)]

lifts0O = [M([1,0,0,1]),M([0,1,-1,0]),M([1,1,0,1]),M([1,0,1,1]),
M([1,-1,1,0]1), M([0,-1,1,11)]

liftsl = [M([1,0,0,11),M([1, (1+i),0,11),M([1,0, (1+i),1]),
MC[1+(1+1) 72,141,141, 1]) ,M([1+(1+1) , - (1+1) , (1+1) ,1-(1+1) 1),
MCO[1+(A+3)+(1+1) 72, -3%x (1+41) 72, (1+1) 72, 1+ (1+1) +ix (1+1) "4]1) ,
M([1+(1+1) +(1+1)"2 - 3*(1+1i)"3,-3*(1+1)"2,

—ix(1+i) "4 + (1+i) + i*(1+i)"5,1+(1+1i)+ix(1+i)~4]),
MC[1+(1+1)+(1+1)"2,-3%x(1+1) "2, (1+1) "2, 1+ (1+i)+i*x (1+1) ~4])
*M([1,1+1,0,11)]

lifts2 = [M([1,0,0,1]),M([1,(1+i)"2,0,1]),M([1,0, (1+i)"2,1]),
M([1+(1+1) "4, (1+1) "2, (1+1)"2,1]),

M([1+(1+1)"2,-(1+1) "2, (1+1) "2, 1-(1+i)~2]),

MC[1+(1+1) "2 +i*(1+1i)"3,-(1+i)"4 - i*(1+1) 75,

-ix(1+1)°3 + (1+i)"4,1+(1+1)"2 - i*(1+i)"3 + i*(1+i)"5 - (1+i)~"6]),
MC[1+(1+1) "2+ i*x(1+1)73,-ix(1+1)"3 + (1+1i)~4, (1+i)"2,

1+(1+1)72 - ix(1+1)73]),

MC[1+(1+i) "2+ i*(1+i) "3, (1+1)"2,-i*x(1+1i)"3 + (1+i)~4,

1+(1+1) 72 - ix(1+1)"3])]

lifts3 = [M([1,0,0,1]),M([1,(1+i)"3,0,1]),M([1,0,(1+1)"3,1]),
M([1+(1+i) "6, (1+1) "3, (1+i)"3,1]1),
M([1+(1+1)"3,-(1+1) "3, (1+i)"3,1-(1+1)"3]),

M([1+(1+1) "3 + (1+1)76,ix(1+i)"5 - (1+1)76 - (1+i)"9,(1+i)"6,
1-(1+1)"3 - (1+i)"9]),

M([1+(1+1) "3 + (1+1)76,i*(1+i)"5 - (1+i)"6 - (1+i)~9,(1+i) "6,
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1-(1+1)"3 - (1+i)~9]1)*M([1,0,(1+1)"3,1]),
M([1+(1+1i)"3 + (1+1)°6,i*x(1+1i)"5 - (1+4i)"6 - (1+i)"9, (1+i)"6,
1-(1+i)"3 - (1+i)"9])*M([1, (1+1)~3,0,11)]

def S_decomposition(g):
r = congruencequotientOm.index(m(g))
rep0 = 1liftsO[r]
g2 = rep0.inverse()*g
s = congruencequotientimm.index(mm(g2))
repl = liftsi[s]
g3 = repl.adjoint () *g2
j = congruencequotient2mmm.index (mmm(g3))
rep2 = lifts2[j]
g4 = rep2.adjoint()*g3
n = congruencequotient3mmmm.index (mmmm(g4))
rep3 = lifts3[n]
gamma = rep3.adjoint()*gd
rep = repO*repl*rep2*rep3

return([rep,gamma] )

The following code is used to calculate the cocycle ¥. This is done in a number
of steps: “Sigmal” is a cocycle which is not defined modulo 4, and is not normalised,

in the sense that when k, k" € SLy(0,,4), Sigmal(k, k') is not necessarily 1.

def X(g):
if g[1,0] == 0:
return(g[1,1])
else:

return(g[1,0])

def Sigmal(g,h):
Xgh = X(g*h)
Xg = X(g)
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Xh = X(h)
return wild_hilbert_symbol (Xgh*Xg,Xgh*Xh)

The function “kappa pi” is the splitting SLy(O,,4) — p2, and “sigma2” is the
cocycle f: that is, it takes the value 1 on SLy(O,,4) x SLy(O,,4) but it is not
defined on SLy(0/4).

def kappa_pi(g):
c = gl1,0]
d= gl1,1]
if cxd ==0:
return 1
elif c.valuation(pi)%2:
return wild_hilbert_symbol(c,d)
else:

return 1

def Sigma2(g,h, gh):

Xgh = X(gh)
Xg = X(g)
Xh = X(h)

return wild_hilbert_symbol (Xgh*Xg, Xgh*Xh) *

kappa_pi(g) *kappa_pi (h) *kappa_pi (gh)

Below, the function “S(g)” is the section S : SLy(O,) — SLy(O,) defining 3,
and “Sigmad” is the cocycle Y itself.

def S(g):
sdecomp = S_decomposition(g)
rep = sdecomp[0]
gamma = sdecomp[1]
Xg = X(g)
Xgamma = X(gamma)

Xrep = X(rep)
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return wild_hilbert_symbol (Xg*Xgamma, XgxXrep)
xkappa_pi (gamma) xkappa_pi (rep) *kappa_pi(g)

def Skappa(g):
sdecomp = S_decomposition(g)
rep = sdecomp[0]
gamma = sdecomp[1]
Xg = X(g)
Xgamma = X(gamma)
Xrep = X(rep)
return wild_hilbert_symbol (Xg*Xgamma, XgxXrep)
xkappa_pi (gamma) xkappa_pi (rep)

def Sigma3(g,h,gh):

Xgh = X(gh)
Xg = X(g)
Xh = X(h)

return wild_hilbert_symbol (Xgh*Xg, Xgh*Xh)
*Skappa (g) *Skappa (h) *Skappa(gh)

Next, we define the group H. Note that it is necessary to lift all the elements of
H to SLy(Z) in order to use the cocycle X. We call this set of lifts “HIift”.

H1 = [mmmm([1,0,0,1]), mmmm([1,1,0,1]) ,mmmm([1,-1,1,0]),
mmmm([0,-1,1,0]), mmmm([1,0,1,1]), mmmm([0,-1,1,1])]

H2 = [mmmm([1,0,0,1]), mmmm([-1,0,0,-1])]
H3 = [mmmm([1,0,0,1]), mmmm([1,2,0,1])]
H4 = [mmmm([1,0,0,1]), mmmm([1,0,2,1]1)]

H = [a*b*cxd for a in H1 for b in H2 for ¢ in H3 for d in H4]

Hi1ift = [M([1,0,0,1]), M([1,1,0,1]),M([1,-1,1,0]),
M([0,-1,1,0]), M([1,0,1,1]), M([0,-1,1,1])]
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H21ift = [M([1,0,0,1]), M([-1,0,0,-11)]
H31lift = [M([1,0,0,1]), M([1,2,0,1])]
H41ift = [M([1,0,0,1]), M([1,0,2,1]1)]

Hlift = [a*b*c*d for a in H1lift for b in H21lift

for ¢ in H31lift for d in H4lift]

We define the representatives for the double cosets H\G/H:

x = mmmm([1,1+i,0,1])

y = mmmm([1, (1+i)~3,0,1])

u = mmmm([1, (1+1), (1+1)°3,1])
t = mmmm([2+i,0,0,2-i])

z = mmmm( [1+2%i,0,0,1+2%i])

xt = x*t

tx = t*x

txt = t*x*t

yt = y*t

yzZ = y*z

ytz = y*t*z

ut = u*xt

tz = t*z

xlift = M([1,1+1,0,11)

ylift = M([1, (1+1)"3,0,1])
ulift = M([-3,1+i,2%i-2,1])
tlift = M([6+i,4,-4+4%i,-2+3%i])
z1lift = M([1+2%1i,4,-4,-3+6%1i])
xtlift = xlift*tlift

txlift = tlift*x1lift

txtlift = tliftxxlift*tlift

ytlift = yliftxtlift
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yzlift = yliftxzlift
ytzlift = ylift*tlift*xzlift

utlift

uliftxtlift

tzlift tliftxzlift

Hdoublecosets = [mmmm([1,0,0,1]),z,t,tz,x,xt,tx,txt,y,yz,yt,ytz,u,ut]
Hdoublecosets_inverses = [g.adjoint() for g in Hdoublecosets]

Hdoublecosetlifts = [M([1,0,0,1]),z1lift,tlift,tzlift,x1ift,

xtlift,txlift,txtlift,ylift,yzlift,ytlift,ytzlift,ulift,utlift]
Finally, we test statement (3.22) with the following programme:

for h in Hlift:

hinverse = h.adjoint ()

for g in Hdoublecosets:
glift = Hdoublecosetlifts[Hdoublecosets.index(g)]
gliftinverse = glift.adjoint()
temp = glift*h*gliftinverse
if temp in Hlift:

print Sigma3(temp, glift, tempxglift)

*Sigma3 (temp*glift,hinverse,temp*glift*hinverse)

Since this returned the value 1 in all cases, Lemma 3.3.5 is proved.
We have shown that the dimension of H, as a C-vector space, is 14. To find its
structure as an algebra, we must multiply elements. Observe that

H{g,1}H = | J H{g,1}{h, 1}

- |J  H{gh%(g,m)}

heH/(HINH)

The following programme computes X(g, h) for each g defined by the basis { H{g, 1} H}
of H, and for each h € H/(HY N H). For each g, ‘hforg’ is a list of h such that Hgh

is a single coset inside HgH.
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hforl = [mmmm([1,0,0,1])]

hforz = hforl

hfort = hforl

hfortz = hforl

hforx = [mmmm([1,0,0,1]),mmmm([1,1,1,2]) ,mmmm([1,0,1,1]),
mmmm ([1,0,2,1]) ,mmmm([0,-1,1,0]) ,mmmm([1,0,-1,1])]

hforxt = hforx

hfortx = hforx

hfortxt = hforx

hfory = [mmmm([1,0,0,1]) ,mmmm([1,0,1,1]) ,mmmm([1,-1,1,0])]
hforyz = hfory

hforyt = hfory

hforytz = hfory

hforu = [mmmm([1,0,0,1]) ,mmmm([1,1,0,1]) ,mmmm([1,-1,1,0]),
mmmm ( [0,-1,1,0]) ,mmmm([1,0,1,1]) ,mmmm([0,-1,1,1]) ,mmmm([1,0,2,1]),
mmmm ( [-1,-1,2,1]) ,mmmm([0,-1,1,2]) ,mmmm([1,1,1,2]),

mmmm ( [0,-1,1,-1]1) ,mmmm([-1,0,1,-1])]

hfortu = hforu

h_for = [hforl,hfort,hforz,hfortz,hforx,hforxt,hfortx,hfortxt,

hfory,hforyz, hforyt,hforytz,hforu,hfortu]

We must find lifts to characteristic zero.

hfor1lift = [M([1,0,0,11)]
hforzlift = hforllift
hfortlift = hforillift

hfortzlift = hforillift

hforxlift = [M([1,0,0,1]),M([1,1,1,2]),M([1,0,1,1]),M([1,0,2,1]),
M([0,-1,1,0]),M([1,0,-1,1])]

hforxtlift = hforxlift

hfortxlift = hforxlift

hfortxtlift = hforxlift
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hforyllft = [M([]-,O:O:l]),M([l,osl’l]):M([ly_l:lao])]

hforyzlift = hforylift

hforytlift

hforylift

hforytzlift = hforylift

hforulift = [M([1,0,0,1]),M([1,1,0,1]),M([1,-1,1,0]),M([0,-1,1,0]),
M([1,0,1,1]),M([0,-1,1,1]),M([1,0,2,1]),M([-1,-1,2,1]),
M([0,-1,1,2]),M([1,1,1,2]),M([0,-1,1,-1]),M([-1,0,1,-11)]

hfortulift = hforulift

h_for_lifts = [hforllift,hfortlift,hforzlift,hfortzlift,hforxlift,
hforxtlift,hfortxlift,hfortxtlift, hforylift,hforyzlift,hforytlift,

hforytzlift,hforulift,hfortulift]

‘HgH’ is a list of the single cosets H gh inside the double coset HgH, and ‘HgHmet’
expresses each double coset H{g, 1}H as a list of single cosets H{gh, %(g, h)}.

HgH = [[Hdoublecosets[index]*h for h in h_for[index]]

for index in range(14)]

HgHmet = [[[Hdoublecosetlifts[index]*hlift,
Sigma3(Hdoublecosetlifts[index] ,hlift,Hdoublecosetlifts[index]*hlift)]

for hlift in h_for_lifts[index]] for index in range(14)]
‘Hecke multiply 2” multiplies all the double cosets in .

Hecke_algebra = ZZ"14
var (’HZ ,HT ,HTZ ,HXH,HXTH,HTXH,HTXTH,HYH,HYZH ,HYTH,HYTZH ,HUH,HUTH" )
evaluation = matrix (14,

[1,HZ,HT ,HTZ ,HXH,HXTH,HTXH,HTXTH,HYH,HYZH ,HYTH,HYTZH,,HUH, HUTH] )

def Hecke_multiply2(r,s):

sum_of _answers = Hecke_algebra(0)

HglH = HgH[r]

Hg2H = HgH[s]
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HglHmet = HgHmet [r]

Hg2Hmet = HgHmet [s]
for a in HglH:
for b in Hg2H:
answer = ax*b
for rep_inverse in Hdoublecosets_inverses:
test = answer*rep_inverse

if test in H:

alift

Hg1Hmet [HglH. index(a)]
blift

Hg2Hmet [Hg2H . index (b) ]

ablift = alift[0]*blift[0]

ind = Hdoublecosets_inverses.index(rep_inverse)
replift = Hdoublecosetlifts[ind]

hlift = replift*ablift.inverse()

twistl = Sigma3(hlift,ablift,replift)

twist2 SigmaS(alift[O],blift[O],ablift)
twist = twistl * twist2 * alift[1] * blift[1]
sum_of_answers[ind] = sum_of_answers[ind] +twist

return((sum_of_answers*evaluation) [0])

for r in range(14):
for s in range(14):
ans = Hecke_multiply2(r,s)

print(evaluation[r],evaluation[s],ans)

This yields the following multiplication table for the genuine Hecke algebra H:

(1, (O, D

((1), (HZ), HZ)
((1), (HT), HT)
((1), (HTZ), HTZ)
((1), (HXH), HXH)
((1), (HXTH), HXTH)
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(1),

(1),

(1),

(1),

(1),

(1,

(),

(1),

((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HZ),
((HT),
((HD),
((HT),
((HT),
((HD),
((HT),
((HT),
((HT),
((HD),
((HT),

(HTXH), HTXH)

(HTXTH), HTXTH)
(HYH) , HYH)
(HYZH) , HYZH)
(HYTH) , HYTH)
(HYTZH) , HYTZH)
(HUH), HUH)
(HUTH) , HUTH)

(1), HZ)

(HZ), 1)

(HT), -HTZ)
(HTZ), -HT)
(HXH) , -HXH)
(HXTH) , -HXTH)
(HTXH) , -HTXH)
(HTXTH) , -HTXTH)
(HYH) , HYZH)
(HYZH) , HYH)
(HYTH), -HYTZH)
(HYTZH) , -HYTH)
(HUH), -HUH)
(HUTH) , -HUTH)
(1), HT)

(HZ), -HTZ)
(HT), 1)

(HTZ), -HZ)

(HXH), HTXH)
(HXTH) , HTXTH)
(HTXH) , HXH)
(HTXTH) , HXTH)
(HYH), HYTH)
(HYZH), -HYTZH)
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((HT),

((HT),

((HD),

((HT),

((HT2),
((HTZ),
((HTZ),
((HTZ),
((HT2),
((HTZ),
((HTZ),
((HT2),
((HTZ),
((HTZ),
((HTZ),
((HT2),
((HTZ),
((HTZ),
((HXH),
((HXH),
((HXH) ,
((HXH),
((HXH),
((HXH),
((HXH) ,
((HXH),
((HXH),
((HXH) ,
((HXH),
((HXH),
((HXH),
((HXH) ,

(HYTH) , HYH)
(HYTZH) , -HYZH)
(HUH) , -HUTH)
(HUTH) , -HUH)

(1), HTZ)
(HZ), -HT)
(HT), -HZ)
(HTZ), 1)

(HXH), HTXH)

(HXTH) , HTXTH)

(HTXH) , HXH)

(HTXTH) , HXTH)

(HYH), HYTZH)

(HYZH), -HYTH)

(HYTH) , -HYZH)

(HYTZH), HYH)

(HUH) , -HUTH)

(HUTH) , -HUH)

(1), HXH)

(HZ), -HXH)

(HT), HXTH)

(HTZ), HXTH)

(HXH), 2«HUTH + 2*%HYH - 2%HYZH)
(HXTH), 2«HUH + 2*HYTH + 2%HYTZH)
(HTXH), 6*HT + 6*HTZ + 4*HXH)
(HTXTH), 4*HXTH - 6*HZ + 6)
(HYH) , HTXTH + HUH)

(HYZH) , -HTXTH - HUH)

(HYTH) , HTXH + HUTH)

(HYTZH), HTXH + HUTH)

(HUH), -4*HTXH - 2*HUTH - 4%HYH + 4xHYZH)
(HUTH) , -4*HTXTH - 2%HUH - 4%HYTH - 4xHYTZH)
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((HXTH) ,
((HXTH) ,
((HXTH) ,
((HXTH) ,
((HXTH) ,
((HXTH),
((HXTH) ,
((HXTH) ,
((HXTH) ,
((HXTH) ,
((HXTH) ,
((HXTH) ,
((HXTH) ,
((HXTH) ,
((HTXH) ,
((HTXH),
((HTXH),
((HTXH) ,
((HTXH) ,
((HTXH),
((HTXH),
((HTXH) ,
((HTXH) ,
((HTXH),
((HTXH) ,
((HTXH) ,
((HTXH),
((HTXH),
((HTXTH) ,
((HTXTH) ,
((HTXTH) ,
((HTXTH) ,

(1), HXTH)

(HZ), -HXTH)

(HT), HXH)

(HTZ) , HXH)

(HXH), 6*%HT + 6%HTZ + 4*HXH)

(HXTH), 4%HXTH - 6%HZ + 6)

(HTXH), 2*HUTH + 2%HYH - 2*HYZH)
(HTXTH), 2*HUH + 2+HYTH + 2xHYTZH)
(HYH), HTXH + HUTH)

(HYZH), -HTXH - HUTH)

(HYTH) , HTXTH + HUH)

(HYTZH) , HTXTH + HUH)

(HUH) , 4*HTXTH + 2*HUH + 4%HYTH + 4*HYTZH)
(HUTH) , 4*HTXH + 2+HUTH + 4xHYH - 4*HYZH)
(1), HTXH)

(HZ), -HTXH)

(HT), HTXTH)

(HTZ), HTXTH)

(HXH), -2%HUH + 2+HYTH + 2*HYTZH)
(HXTH), -2*HUTH + 2%HYH - 2xHYZH)
(HTXH), 4*HTXH - 6%HZ + 6)

(HTXTH), 6*HT + 4*HTXTH + 6%HTZ)

(HYH), -HUTH + HXTH)

(HYZH), HUTH - HXTH)

(HYTH), -HUH + HXH)

(HYTZH), -HUH + HXH)

(HUH), 2+HUH - 4*HXH - 4xHYTH - 4*HYTZH)
(HUTH), 2*HUTH - 4*HXTH - 4*HYH + 4%HYZH)
(1), HTXTH)

(HZ), -HTXTH)

(HT), HTXH)

(HTZ), HTXH)
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((HTXTH), (HXH), 4+HTXH - 6*HZ + 6)

((HTXTH), (HXTH), 6%HT + 4*HTXTH + 6*HTZ)

((HTXTH), (HTXH), -2*HUH + 2+HYTH + 2*HYTZH)

((HTXTH), (HTXTH), -2+HUTH + 2*HYH - 2%HYZH)

((HTXTH),
((HTXTH),
((HTXTH),
((HTXTH),
((HTXTH),

((HTXTH)
((HYH) ,
((HYH),
((HYH),
((HYH),
((HYH),
((HYH),
((HYH),
((HYH) ,
((HYH),
((HYH),
((HYH),
((HYH),
((HYH),
((HYH),
((HYZH) ,
((HYZH) ,
((HYZH) ,
((HYZH) ,
((HYZH) ,
((HYZH) ,
((HYZH) ,
((HYZH) ,

, (HUTH), -2+HUH + 4*HXH + 4+HYTH + 4*HYTZH)

(1), HYH)
(HZ), HYZH)
(HT), HYTH)
(HTZ) , HYTZH)

(HYH), -HUH + HXH)
(HYZH) , HUH - HXH)
(HYTH) , -HUTH + HXTH)
(HYTZH), -HUTH + HXTH)
(HUH), -2*HUTH + 4*HXTH + 4*HYH - 4%HYZH)

(HXH) , HTXTH - HUH)

(HXTH) , HTXH - HUTH)

(HTXH) , HUTH + HXTH)

(HTXTH) , HUH + HXH)

(HYH) , 2*HYZH + 3)

(HYZH), 2*HYH + 3%HZ)

(HYTH), 3*HT -
(HYTZH) , 3*HTZ
(HUH), 2*HTXTH
(HUTH) , 2+HTXH
(1), HYZH)

(HZ), HYH)

(HT), -HYTZH)
(HTZ), -HYTH)

2%HYTZH)

2xHYTH)
HUH - 2xHXH)
HUTH - 2*HXTH)

(HXH), -HTXTH + HUH)
(HXTH), -HTXH + HUTH)
(HTXH), -HUTH - HXTH)
(HTXTH), -HUH - HXH)



Chapter 3. A ramified genuine Hecke algebra

150

((HYZH),
((HYZH),
((HYZH),
((HYZH) ,
((HYZH),
((HYZH),
((HYTH) ,
((HYTH) ,
((HYTH),
((HYTH),
((HYTH) ,
((HYTH),
((HYTH),
((HYTH) ,
((HYTH) ,
((HYTH),
((HYTH),
((HYTH) ,
((HYTH),
((HYTH),
((HYTZH) ,
((HYTZH) ,
((HYTZH),
((HYTZH),
((HYTZH) ,
((HYTZH),
((HYTZH),
((HYTZH) ,
((HYTZH) ,
((HYTZH),
((HYTZH),
((HYTZH) ,

(HYH), 2*HYH + 3*HZ)

(HYZH), 2*HYZH + 3)

(HYTH), -3%HTZ + 2%HYTH)
(HYTZH), -3+*HT + 2*HYTZH)
(HUH), -2+HTXTH + HUH + 2+%HXH)
(HUTH) , -2*%HTXH + HUTH + 2%HXTH)
(1), HYTH)

(HZ), -HYTZH)

(HT), HYH)

(HTZ), -HYZH)

(HXH), HUTH + HXTH)

(HXTH), HUH + HXH)

(HTXH), HTXTH - HUH)

(HTXTH), HTXH - HUTH)

(HYH), 3*HT - 2%HYTZH)

(HYZH), -3*HTZ + 2*HYTH)
(HYTH), 2%HYZH + 3)

(HYTZH) , -2%HYH - 3xHZ)

(HUH), -2%HTXH + HUTH + 2xHXTH)
(HUTH) , -2*%HTXTH + HUH + 2%HXH)

(1), HYTZH)
(HZ), -HYTH)
(HT), -HYZH)
(HTZ), HYH)

(HXH), HUTH + HXTH)
(HXTH) , HUH + HXH)
(HTXH), HTXTH - HUH)
(HTXTH), HTXH - HUTH)
(HYH), 3*HTZ - 2*HYTH)
(HYZH), -3*HT + 2*HYTZH)
(HYTH), -2*%HYH - 3%HZ)
(HYTZH), 2*HYZH + 3)
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((HYTZH), (HUH), -2%HTXH + HUTH + 2+%HXTH)

((HYTZH), (HUTH), -2*HTXTH + HUH + 2%HXH)

((HUH), (1), HUH)

((HUH), (HZ), -HUH)

((HUH), (HT), HUTH)

((HUH), (HTZ), HUTH)

((HUH), (HXH), 2«HUTH + 4*HXTH + 4*HYH - 4*HYZH)

((HUH), (HXTH), 2%HUH + 4xHXH + 4%HYTH + 4*HYTZH)

((HUH), (HTXH), -4*HTXTH + 2%HUH - 4%HYTH - 4*xHYTZH)

((HUH), (HTXTH), -4*HTXH + 2+HUTH - 4*HYH + 4*HYZH)

((HUH), (HYH), -2*HTXTH - HUH + 2*HXH)

((HUH), (HYZH), 2*HTXTH + HUH - 2xHXH)

((HUH), (HYTH), -2%HTXH - HUTH + 2xHXTH)

((HUH), (HYTZH), -2+HTXH - HUTH + 2%HXTH)

((HUH), (HUH), 4*HTXH + 4%HXTH - 4xHYH + 4*HYZH - 12*HZ + 12)
((HUH), (HUTH), 12%HT + 4*HTXTH + 12+HTZ + 4xHXH - 4*HYTH - 4*HYTZH)
((HUTH), (1), HUTH)

((HUTH), (HZ), -HUTH)

((HUTH), (HT), HUH)

((HUTH), (HTZ), HUH)

((HUTH), (HXH), -4%HTXTH + 2+HUH - 4*HYTH - 4*HYTZH)

((HUTH), (HXTH), -4xHTXH + 2%HUTH - 4xHYH + 4xHYZH)

((HUTH), (HTXH), 2*HUTH + 4*HXTH + 4*HYH - 4xHYZH)

((HUTH), (HTXTH), 2*HUH + 4*HXH + 4*HYTH + 4*xHYTZH)

((HUTH), (HYH), -2*HTXH - HUTH + 2*HXTH)

((HUTH), (HYZH), 2*HTXH + HUTH - 2%HXTH)

((HUTH), (HYTH), -2*HTXTH - HUH + 2%HXH)

((HUTH), (HYTZH), -2*HTXTH - HUH + 2*HXH)

((HUTH), (HUH), -12%HT - 4*HTXTH - 12%HTZ - 4%HXH + 4*HYTH + 4*HYTZH)
((HUTH), (HUTH), -4*HTXH - 4*HXTH + 4xHYH - 4xHYZH + 12xHZ - 12)

Write g for {g,1} € G.
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Proposition 3.3.6. HzH belongs to the centre of H. We have an isomorphism of
7ings

;T[ = ﬂz:l S ﬁz:fl

where H._y is the summand ofﬂ on which HzH acts as 1, and H,—_; is the sum-

mand on which HzH acts as —1.

This is clear since 7 is in the centre of G and (ﬁzf])2 =1in H.

Theorem 3.3.7. H._1 is commutative and 4-dimensional as a C-vector space, with

basis

~

{1,9,,yt}.

It has 4 irreducible 1-dimensional representations, given by

tr—s 1 tr— 1 tr— —1 t— —1
yr—3 yr— —1 yr—3 gr— —1
yt — 3 yt — —1 yt — —3 yt — 1

~

Note, from the multiplication table above, that setting HzH =1 forces HzH =
HuH = 0.
Theorem 3.3.8. The algebra H.—_, is non-commutative and 10-dimensional as a

vector space, with basis

~

{1,t, 2, xt, tx, tot, §, yt, G, ut}.

Its centre, Z(H.—_,), is 4-dimensional, generated by {1,%, =t + yt, 3y = & + tat +

dyt, 23 = to + ot — 29}. There are 4 central characters:

x1(%1) =2 Xa(21) = —2 X3(%1) = 2 Xa(21) = —2
x1(22) =0 X2(%2) =0 x3(22) = 12 X4(22) = —12
x1(23) = —6 X2(23) = —6 x3(23) =6 Xa(23) =6

The irreducible representations of H.—_1 are:

1.

H.——1/(21 = x1(21), 22 = x1(%2), 23 = xa(%3)) — C
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2.
Hoe1/(21 = xa(%1), 22 = x2(2), 23 = x2(33)) — C
3.
Hoe1/(21 = x3(%1), 22 = x3(%2), 23 = xa(%3)) — Ms(C)
) 0 48
i —
1 0
N 1 0
t—
0 —1
4.

Hoe1/(21 = xa(%1), 22 = xa(%2), 23 = xu(%3)) — M;(C)

A 0 48
u+—

1 0
. 1 0
t——

0 -1

Each of these representations is an isomorphism, hence
H.— 12 CdCd M(C)D M,y(C).
Proof. Setting HzH = —1, we have (from the table above)

yt* 5 = —ytz

= gjt = y?ﬁz;
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~ ~

tz* 2= —t
= tz=1t.

Thus, H.—_; is 10-dimensional, with basis

{1,t, 2, xt, tx, tat, §, yt, G, ut}.

A straightforward (but long) check shows that Z(#.—_1), is 4-dimensional, gen-
erated by {1, 21, %3, 23}. The following is the multiplication table for Z(H.—_;):

1 21 Z9 zZ3
1 1 21 Z9 zZ3
21 <1 4 223 + 12 222 - 621

Z9 29 223 + 12 1223 + 72 62’2

Z3 23 22’2 — 621 62’2 36

Indeed,
2= (t+yt)(t +yt)
=1+42)—2)+3

=4.

22 = (& + tot + 4yt) (2 + tat + 4dyt)
= 2ut + 49 + 4xt + 12 + 4(tx + ut) + 4tz + 12 — 2ut + 49 + 4(—ut + t)
+ 4(ut + xt) + 4(tx — ut) + 16(—2¢ + 3)
= — 249 + 12zt + 12tz + 72
= 12(tx + xt — 27) + 72

=122 + 72.

22 = (to + ot — 29) (tx + xt — 27)
= dtw + 12 — 2ut + 49 — 2(—ut + xt) + 2ut + 4§ + 4ot + 12 — 2(tx + ut) — 2(ut + t)
— 2(tx — ut) + 4(—29 + 3)

= 36.
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2129 = (& + tat + dyt)(t + yt)
= ot +tox + 49 + tr + ut — ut + ot + 4(—27 + 3)
= 2ut + 2t — 49 + 12

2oty = (& + tat + dyt)(tx + ot — 27)
= 12f + 4% + 20 + 4yt — 2txt — 20 — 20 + 2yt + 2yt + 12t + 4Atat + 20 + Atat
— 40 + 40 + 4% — 24t + 16yt
= 6% 4 24yt + 6tat

== 622

2125 = (t+ yt)(tx + ot — 29)
= 2% + 2tat + 2yt — 6t
= 2(& + tat + dyt) — 6yt — 61
= 2%, — 63,

Clearly, if x : Z(H,-_1) — C is a ring homomorphism, then
X(21) = £2 and x(23) = £6.
If x(21) =2 and x(23) = 6, the equation
X(2122) = 2x(25) + 12 (3.23)

implies x(%2) = 12. This gives x3. If x(21) = 2 and x(23) = —6, then by (3.23),
X(22) = 0. This gives x1. If x(21) = —2, then again by (3.23), x(23) = 6 gives
X(%22) = —12, and x(23) = —6 gives x(%2) = 0. This gives the values of the two
remaining characters.

For ease of notation, define, for 1 <1 < 4,
Hi =Hot/{ = xilC) for all { € Z(Homm1))-

Consider H ! The relation 25 = y1(%3): that is, tx 4+ zt — 2 = —6, gives, on

z=—1"

multiplication by ¢ on the left,

&+ tat — 2yt = —6L. (3.24)
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The relation z; = x1(2;1) implies that yt =2 —1t, and 2, = X1(22) implies

Tttt +8—4t =0<

—8 — twt + 4t = 3. (3.25)
Substituting (3.25) into (3.24) gives

tat — 8 — tat + 4t — 2yt = —6t <
—8410f =2yt &

—4 + 5t = yt. (3.26)
On the other hand, since yt = 2 — #, (3.26) gives

—44+5t=2—t<

—6+6t=0<
6t =6 <
{=1.

If ¢ : H_ | — Endc(C™) is a ring homomorphism (for some integer m > 1),

then

$at) = ¢(tx) = ¢(tat) = d(2);

oyt) = o(y)
and,
¢(ut) = ¢(a).

The relation yt = 2 — ¢ gives § = 1. Using the relation tx + a2t — 2 = —6, we get
that
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Observe that in H,__1,
&% = tat + G

Multiplying by # on the left of the relation yt = 2 — ¢ shows that § = 2f — 1. Using
this, and (3.25), we have

(=8 — twt + 4f) * (2t — 1) = tat + 4 <
—20t + 16 + tat — 2tx = tot + 1 =
=16 — 20t — 2tr <

G=16—20+4usingt=1,tr =0 =—-2<

u = 0.
We have shown that there is a homomorphism

g:iq —C
t—s 1,
T — —2,
tr — —2,
Tt — —2,
y—1,
yt — 1,
ut — 0,

u— 0.

X2
z=—1

Consider H>_,. We shall show that {1,#, @, ut} is a basis for H,>_,. By the

The 1-dimensional representation of H is calculated in much the same way.

relation 2; = x3(21), we have yt = 2 —t and therefore § = 2t — 1. In H,__1,
tat x tot = —2ut + 47

= —2ut +4(2t — 1)

= —2ut + 8¢ — 4. (3.27)
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On the other hand, by associativity, txt * tot = tx * t2 % 2t = tx * xt = t * &2 x £, and

>
*

12 %t =142 — 12)t

= 4dtat — 12. (3.28)
Putting (3.27) and (3.28) together gives

Azt — 12 = —2ut + 8t — 4 &
Azt = —2ut + 8t + 8 &

- 1- N
tet = —§ut +2t+2. (3.29)
By the relation 2 = y3(23), we have

& =12 — 4yt — tat
=12 —4(2 —t) — tat
=4+ 4f — tat

~ 1.
=242t + Eut using (3.29) (3.30)

Multiplying by ¢ on the left gives

N ~ 1
tr =242t — -,

[\

and on the right gives

—_

it:2+2£+§a.

That is, {1,, @, ut} is a basis for

z=—1"

In ﬂfi,l,
0% = dtx + 4ot — 8 + 24
— A2+ 24
= 48.
Also, (ut)? = —4® = —48, and ut = —tu. Thus H.. | has a basis {1,4,1,ut}

subject to the relations #> = 1,4% = 48, (ut)? = —48,tu = —ut. Hence there is a
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homomorphism
. 0 48
U —>
1 0
. 1 0
t—
0 —1

which is also an isomorphism.

Finally, consider 7. ,. Calculations as above show that {1,7,,ut} is a basis
for H.* |; the relations are 4> = 48, (ut)?> = —48 and ut = —tu. Thus there is a
representation

L | — My(C)

R 0 48
U —>

1 0
R 1 0
t—

0 —1

as above, which is an isomorphism.

3.4 Representations of SLy(F;) containing

non-zero K,(4)-fixed vectors

Let @, (x1, x2) be the component at 7 of a level one cuspidal automorphic repre-
sentation of SLy(A). Thus, w,(x1,x2) is an unramified principal series representa-
tion, which is an irreducible admissible representation of SLs(F}), and whose space

of K := SLy(0,)-fixed vectors is not zero. In fact,

dim(wﬂ'(Xh XZ)KW) = ]-7

and

X1, X2 : FX/OX — C* are unramified.
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Define x : FX/OX — C* by x = xi1xe; x is the central character of w,(x1, x2)
Since both x; and xy are even, w,(x1, x2) is in the image of §ﬂ, the modified local
Flicker correspondence (Theorem 1.4.13). We shall denote its pre-image by @, ().
The representation @, () is of the principal series; its (genuine) central character y

is defined by:
a a
X 7§ :fx fOTaGFWXafGM%
0 0

and @, () is level one, since
dim(z, ()5 @) > 0.

In this section, we shall calculate the dimension of ﬁﬂ()’()f(’*(‘l) and we shall de-

termine this space as a representation of the genuine Hecke algebra .

3.4.1 The extension of the central character

Recall the subgroups T,, N,, B, C GLy(F,) we defined in Section 1.1. We want
to think of these instead as subgroups of SLo(F}) or SL2(O,). To this end, define,
for R = F; or O,

a 0
T(R) = ae R* »;
1
0 a”
1 b
N(R) = beR,;
0 1
a b
B(R) = - a€R*, be Ry =N(R)T(R)=T(R)N(R),
a

and let T(R), N(R), B(R) be their respective pre-images in SLy(R).

In the notation of Subsection 1.4.1, the representation Z,(x) of SLo(Fy) is of

STQ(Fﬁ)
B(Fr)

on N(F,) and which agrees with y on T(F;)%. Note that, in the case of GL,, the

the form Ind (Xo), for some genuine character yo of B(F,) which is trivial

principal series representations are induced from a representation of B(F,) which

is itself induced from TO(Fﬂ)]\Af (F) where TO(FW) is a maximal abelian subgroup of
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T(Fy). In the case of SLy, the group T(F}) is itself abelian, so we can simply induce
from B(F,) = T(F,)N(F,).
To find such a character Yo, we must extend Y to the whole of T'(Fy).

Since the Hecke algebra acting on Ind %T“;S")(Xo) is H = H(K,, I?W(él)), it will
SLa(Fr)

be sufficient to calculate Ind B(R)

(Yo) as a K -module. Observe that

SLZ(FW)/E(FW) = SL2(F7T)/B(F7T) = KW/B(OW) = E/E(Oﬂ)
It follows that there is a K ,-isomorphism

SLy(Fr) /= \ ~ Kar _
Ind 55 (Xo) = Ind 55, (o).

Our task now is to find a character Yo of T(O,) which is trivial on 7/:((‘)”)2 (since

X is unramified) and genuine. Since this character will have the property that
Xo({g,—1}) = —1 for all g € K,

it will suffice to determine ¥o on the subgroup T(0,) = T(O,).
We shall use the isomorphism 7'(0,) = O to abuse notation: we’ll write Yo(a)
for Yo ((g a91 )) Consider the extension
1 — g — T(0;) — T(Og) — 1;
it corresponds to the restriction of the cocycle w, to T'(0,) which we gave in (1.6).

The character Yo shall be a section T(0,) — us corresponding to the 2-cocycle wy.

Lemma 3.4.1. Define xo: T(0,) — C* by

Yo({i3%(1 4 20)¢,£}) = € (=1)* for a,b,c € {0,1} and & € py.
Then Xo is a genuine character of T(O,) which is trivial on T(0,)2.
Proof. Note that y, is well-defined since

T(0.)/T(0,)? 20X /022 = (0/7°)" J{£1} =<i>x <3>x <1+2i>
= OQ X 02 X OQ.

This means that every element of O /0X? has a unique representation in the form

i%3%(1 + 2i)¢ for a,b, c € {0,1}.
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Clearly, Yo is genuine. To see that yq is a character, suppose that z = {i*3°(1 +
2i)°,1} and y = {i%3" (1 42i)%, 1} are two elements of 0% /0% x {1}. Of course, we
shall think of z and y as elements of T(O,) = T(0,) x {1}. Now,

z oy ={i%3°(1 + 20)¢, 1} = {i3” (1 + 20)° 1}
={i%3%(1 4 20)%% 3" (1 + 20)¢, wx (193" (1 4 24)%,i% 3 (1 + 20)°)}

= {97930V (1 4 20)°+ (4937 (1 + 20)¢, 4% 3% (1 + 20)° )} by Lemma 1.1.5

/

. /
— {,La-l—a 3b+b

{i9 30 (1 4 20)°+ (4,1 + 20)%+¢} since (,3), = 1 and (3,1 + 2i), = 1

(
(
(
( ,

)

1+ 20)7F, (4, 3)87 0 (i, 1 4 20)2 (3, 1 4 20)% T}
)7
)7

={i® 3 (14 20)H, (=1)°TY since (4,1 4 2i); = —1.

Therefore,

XO(I * y) :(—1)(‘1"'“’)(‘3"'0')(_1)ac’+a’c

:(_1>ac+a’c’ )

On the other hand,

[N}

Xo(2)Xo(y) =(=1)*(=1)*"

:(_1)ac+a’c’.

Hence Yy is a character. Finally, yq is obviously trivial on f(OW)z.

Remark 3.4.1. The centre of K, is

1 0
0 =1

,:|:1 gCZXOQ.
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The central character of Ind £~ (Xo) is given by:

B(0r)
-1 0
XO 71 =1
0 -1
-1 0
% 1y =1
0 -1
10
)_(0 7_1 =-1
01
10
X0 , 1 =1.
0 1

This can easily be seen by the fact that —1 = 2 € OX2. In fact, this is the only

choice of central character whose restriction to 02 is trivial.

3.4.2 The action of H

To save chalk, put W = Ind g(”oﬁ)()_m). By definition (see (1.25)),

%% :{f Ky — C| f(gb) = xo(b)f(g) for all b € B(O,),g € K;

f is locally constant} .

1 —
Note that in this case, the normalising factor | - |2 is trivial because b € B(0O,) (if

b= (g ,%), then |a|, = 1). We shall find a basis for the space of K (4)-fixed vectors

0a?

in W. Again, by definition,
k=) — {f Ky — C| flkgh) = %o(b)f(g) for all k € Kr(4),b € B(O,),g € Ky:
f is locally constant.}
Let B(O/4) be B(R) as above, with R = O/4. There are bijections
K (4\K/B(O0;) = SLy(Z/4)\SLy(0/4)/B(0/4) = SLy(Z/4)\P'(0/4), (3.31)
and, further, that |SLy(Z/4)\P'(O/4)| = 4; a set of double coset representatives for

K, (4\K,/B(0O,) is given by:

) Y 9 . (332)
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In fact, since

R (4\K/B(0,) = K.(4)\K./B(0,),

a sct of coset representatives for Ky (4)\K,/B(0O,) is:
{f= {01} | h € Kx(0)\ K./ B(05) }

Each element of WX~ is determined by its values on the representatives (3.32).
If h is such a representative, and there is an element which has value 1 on ﬁ, and 0

on all other representatives, then we call this element 1;. The elements of the form
1; form a basis for k().

Suppose that k € K,(4) and b € B(O,).

It follows that if khb = k’hb then we must have Yo(b) = Yo(V'). This means that for
each h, Yo must be trivial on B(O,) N (h~1K(4)h).
We shall write & for h = {h,1} and we shall think of the representatives (3.32)

as their images under (3.31): that is, as the elements

0 1 1 1

of P'(O/4). Then the basis for WE=® can be re-written as:

1ag, 1 Ly-ip, D}
{2t 1
Lemma 3.4.2. The representation WE=(4) s 2-dimensional as a complex vector

space. A basis is given by
{23
Proof. We shall show that Yo is not trivial on B(O,) N (h~'K,(4)h) when
h={(ig"),1}and {(7 3'),1}. Using (3.31), this is equivalent to showing that ¥,
is not trivial on B(O0/4) Nh™'SLy(Z/4)h when h = (i ') or (7 741).



Chapter 3. A ramified genuine Hecke algebra 165

-1 — c d 1 0

i —
Let hy = . Observe that
1 0
. 0 1 a b 1 —1
hi*SLy(Z/4)hy = a,b,c,d, € Z/4,ad — bc =1 (mod 4)
-1 1 c d 1 0
d+ic —c
= a,b,c,d, € Z/4,ad — bec =1 (mod 4)
—b—c+i(d—a) a—ic
Then,
a+ic —c
B(0/4) N hi'SLy(Z/4)hy = a,c € L[4
0 a—1ic
In particular, setting a = 2,¢c = —1, we find that
X0 = —1 since 2 — i = i°(1 + 21).
0 (2-9)7!
—i —1
Let hy = . Observe that
1 0
. 0 1 a b -1 —1
ho SLo(Z/4)he =

a,b,c,d, € Z/4,ad —bc =1 (mod 4)}
d—ic —c
—b—c—i(d—a) a-+ic

a,b,c,d, € Z/4,ad —bc =1 (mod 4)}.

Then,
a—ic —c
B(O/4) N hy'SLy(Z/4)hy = a,c € Z/4
0 a+ic
In particular, setting a = 2,c =1, we find that
X0 ' = —1 since 2 — i = i°(1 + 21).
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This implies that the functions ]lm, IL[_li] do not exist.
One can prove in the same way that Yo 4s trivial on B(O/4) N h™'SLy(Z/4)h
when h = ({9) and (% ). O
The Hecke algebra H acts on WE=(4) in the following way. Let § € K, and let T

be the double coset IA(W(4)§]I?W(4):

We saw in Subsection 1.4.1.4 that K, acts on the right of W by left translation;

explicitly:

(f9)(z) = f(g) for f € W.g € K.

The action of T is

UT)) =Y (fam)(@)

m

m

In particular, if z,y belong to {[{],[%]}, then

LT W= Y Lulduy)

In practice, we shall work “mod 4” using the isomorphism H = H (K, K,(4)) =
H(SLy(0/4), ,S/’EQ(Z/ZL)) = H(G, ﬁ) Recall (Proposition 3.3.6) that there is a de-
composition of H:

ﬂ = ﬂz:l ©® ﬁz:fl;

we have an action of either summand, H,—; or H.—_;, according to whether the

double coset HZH acts as 1 or —1 respectively.
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Proposition 3.4.3. The representation Wk s g representation of H.—1.

Proof. We are required to show that HZzH acts trivially on WE=(4), First recall

that
~ o~ o~ 14 2¢ 0 ~
HzZH =H 1
0 1422
~ 1422 0
= 71
0 1422
Now,
~ ~ 1 0 142 0
<1[1]H2H> , 1 21[1] ,
0 01 0 0 1422
~ 1+ 2 0
=Xo s
0 14+ 2
=1.
~ ~ 2i —1 14+ 2 0 2i —1
(]l{QqHEH) , 1 Zﬂ[gi} , 1 , 1
1 1 0 1 0 1+ 2 1 0
2i —1 142 0
:1[21'} ) 1
! 1 0 0 142
~ 1+2¢ 0
=Xo 71
0 142
=1.
Hence HzH acts trivially as claimed. O

Since H,_; is commutative (Theorem 3.3.7), it follows that WE=4 must be re-
ducible: it must be the sum of two irreducible subspaces. Furthermore, since H,—;
is generated as an algebra by ¢ and ¢, where

A2 o
U =20+3

2 =1,

each of these irreducible subspaces must be an eigenspace for the action of § and ¢.
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Theorem 3.4.4. As a representation of K ,

WE® >~ (3) @ W(-1),
where W(3) (resp. W (—1)) is the 3 (resp. —1)-eigenspace of .
Proof. We shall calculate the action of .

~ o~ o~ 2+
H=H

)
gl

Now,
o~ ~ 10 241
(ﬂp}HﬁH) , 1 , 1
0 0 1 O
- 2+1
=Xo 71
0 2—1

=—1.

That is,
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Further,

(1 }AIHAI> 21 —1 . " 2+:7 0 . 2t —1 .
21 9 — 21 9 )
7] 1 0 & 0 2—1 1 0

2 2—1
b ’
1 2—1 0
241 0 2t —1
by :
0 2—1 1 0
2t —1 2—1 0
~HA |
! 1 0 0 2+
241 0 2t —1
by :
0 2—z 1 0
21 —1 2—4 0
by :
1 0 0 2+
2—1 0
:XO 71
0 2+
=—1.
Hence,

(1 A ) = ~1j31).

We have shown that ¢ acts as —1 on Wf(“(‘l). We shall now calculate the action

of 7. Recall that

1 242 .
HyH =H s H
0 1

3
:Uﬁ]{yi,l} where
i=1
1 242 —14+2t —2+2 —1+20 —1

= y Y2 = » Y3
0 1 1 1 1 0
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)
i)
)

|

Then,

om0
) ({ (HQ@ HQ@)
wffl )

We shall consider each summand on the right-hand side in turn.

) MDD )
(i)

=1.

On the other hand,

wlfCr ) HE) )
()= ()
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for some complex number c.

Next, we evalulate (]1[(1)][/-\[@[/-\0 on (% '). We have

L 2i —1 1 242 2 —1
<]1[1]HyH> ,1 :1[1] ,1 ,1
0 1 0 0 0 1 1 0
—14+2¢ —2+4 2 2t —1
+]l[(1)] , 1 , 1
1 1 1 0
—14+2: —1 2t —1
—l—ﬂ[1] , , 1
0 1 0 1 0

1 242 21 —1

1) 1 1
0 0 1 1 0
L 2 -1 5 1 242 2t —1 5 1 242 2t —1
- 1 ] ) 7
[o] 1 0 0 1 1 0 0 1 1 0
2 -1 |
Tyl o )
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The second summand:

R )
ey K (Coatras H vl ) )
By (e E ey )1}
D)= L))
)6 )
L))
wi () HE )
{0

=0.

L

)

—_

—_

o

I
o=
—~
R

Thus,
(1 HoH) =17y + 21

The next step is to calculate 1[217,] g?[ ) on (

(lei?lg?f) 10 . 1 242 B 1
—14+21 =242

) | L)
(S
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We shall consider each summand on the right-hand side in turn. The first summand:

I ({(; 2+12i)’1}{(; (1])1})
il 6 )

The second summand:

i (1)) )
wlile 00N
Sl I (R RN

The third summand:

MBIl

—
=
s
)
Ny
)
~
,—/H
7~
o —
— o
~
—
—_——
I
[N}
=
o
+
)
=
s
o
=
02}
@)
=
)
)
o
B
S,
o)
"
=
o
S
on
o)
—~
)
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~

We must calculate the action of H [/17 o). We have
~ 2 —1 1 242 2 —1
(319 1
! 1 0 1 0
—1+20 —242¢ 21 —1
1 1
1 1 0
—1+2 — 21 —1
+ 1[21‘] 1 o1
! 1 0 1 0

1 242 21 —1
'3 ’ !
0 1 1 0
2+41 —1 1 242 21 —1
:]1% 9 )
7] { 1 0 0 1 1 0
0 —1 1 0 0 —1 1 0
1 0 —2—41 1 1 0 —2—-47 1
1 0 1 0 1 0 1 0
-2 1 —45 1 -2 1 —45 1
1 0
— 4 1 !
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The second summand:

1492 —24292 2 —1
') ! !
1 1 1 0
. 2 1-9 . 1492 —24+292 2% —1
— 3] 1+2 -1 |’ 1 1 "1 o
, 9 —1\ [1+2i -1 . 142 —2472 2% —1
= 2% 3 )
7] 1 0 0 1+2 1 1 1 0
142 -1 2 -1 14+2 -1
~ ] - /

0 1+ 24
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The third summand:

aw({C)HG))
(G (G RN ) 1)
({0 )= () 00)
E((; L))
w0006
((”” D)

( ) )
({060

EE JL )

|
—_ w

Choose another basis
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of WE=() Let W(3) be the line spanned by {]1[211] + ]1[(1]] } Observe that

(12 + 1y3) HoH =3 (272 +2py))
and

~

Vo) + 1) HEH = =1 (L) + 111
CERET) CIRRy
Thus W (3) is the 3-eigenspace of § and the —1-eigenspace of .
Define W (—1) to be the complement of W (3) in WE=@): that is, the line spanned

by 1[211] — ]l[(l)] We have

and

Thus W(—1) is the —Il-eigenspace of  and the —1-eigenspace of . O



Appendix A

Notes on Chapter 2

A.1 Sage code

The following Sage code is used to calculate H?(~ \D', rz) = Z©).
Recall the code used to determine the action of the elements ~i, 79, 73,74 on

V := Indp (kg): that is, the list ‘gammaactionk’.

F.<i> = NumberField(x"~2+1)

R = F.ring of_integers()

pi = F.ideal(1+i)

k = R.residue_field(pi,’b’)

kk = R.quotient_ring(2,’b’)
kkk = R.quotient_ring(2xpi,’b’)
kkkk = R.quotient_ring(4,’b’)

kkkkk = R.quotient_ring(4*pi,’b’)

M = MatrixSpace(F,2)

m = MatrixSpace(k,2)
mm = MatrixSpace(kk,2)
mmm = MatrixSpace(kkk,2)

mmmm = MatrixSpace (kkkk,2)

quotient0O = [M([1,0,0,1]),M([0,1,-1,0]),M([1,1,0,1]),M([1,0,1,1]),
M([1,-1,1,01), M([0,-1,1,11)]

178
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quotientl = [M([1,0,0,1]),M([1,0,0,-1i]), M([1,1+i,0,1]),
M([1,0,1+i,1]), M([i,1+i,0,-i]), M([i,0,1+i,-i]),
MC[1,1+3,1+1,142%i]), M([i,1+i,1+1,2-i])]

quotient2 = [M([1,0,0,1]1),M([1,2,0,1]), M([1,0,2,1]),
M([-1,0,0,-1]), M([-1,2,0,-1]), M([-1,0,2,-1]), M([1,2,2,5]),
M([-5,2,2,-1])]

quotient3 = [M([1,0,0,1]) ,M([3-6%i,4,-4,-1-2%i]), M([1,2+2%i,0,1]),
M([1,0,2+42%1i,1]), M([-5+2%1i,2+2%i,4,-1-2%i]),
M([-5+2*i,4,2+2%i,-1-2%1]), M([1,2+2%1,2+2%1i,1+8%i]),
M([-1+2%i,2+2%1,242%1,3-2%i])]

quotientOm = [m([1,0,0,1]),m([0,1,1,0]),m([1,1,0,1]1),m([1,0,1,1]),
m([1,1,1,0]),m([0,1,1,1])]

quotientimm = [mm([1,0,0,1]), mm([i,0,0,-i]), mm([1,1+i,0,1]),
mm([1,0,1+i,1]), mm([i,1+i,0,-1i]), mm([i,0,1+i,-1]),
mm([1,1+1i,1+1i,1+2%i]), mm([i,1+i,1+1i,2-1i])]

quotient2mmm = [mmm([1,0,0,1]), mmm([1,2,0,1]),
mmm([1,0,2,1]), mmm([-1,0,0,-1]),

mmm( [-1,2,0,-1]), mmm([-1,0,2,-1]),
mmm([1,2,2,5]), mmm([-5,2,2,-1])]

quotient3mmmm = [mmmm([1,0,0,1]), mmmm([3-6%i,4,-4,-1-2*i]),
mmmm ( [1,2+2%i,0,1]), mmmm([1,0,2+2%i,1]),

mmmm ( [-5+2%1i,2+2%i,4,-1-2*%i]), mmmm([-5+2%1,4,2+2%i,-1-2%1i]),
mmmm ( [1,2+2%1,2+42%1,1+8%1]), mmmm([-1+2%1,2+2%i,2+2%i ,3-2%i])]

representatives = [axb for a in quotientl for b in quotient3]
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def Decomposition(gamma) :
r = quotientOm.index (m(gamma))
rep0 = quotientO[r]
gamma2 = gammax*repO.inverse()
a = quotientlmm.index (mm(gamma2))
repl = quotientl[a]
gamma3 = repl”-1xgamma?2
u = quotient2mmm.index (mmm(gamma3))
rep2 = quotient?2[u]
gamma4 = gamma3*rep2 -1
b = quotient3mmmm.index (mmmm(gamma4))
rep3 = quotient3[b]
gammab = rep3”-lxgammad

return([repl,rep3, gammab,rep2*rep0])

gammainverselist = [M([0,-i,-1,0]),M([0,1,-1,0]),M([1,-1i,-1,0]),
M([1,-1,1,01)]

def residuesymbol(x,y):
K = R.residue_field(y)
xbar = K(x)

answer = xbar” ((norm(y)-1)/2)

if answer == K(1):
return 1

elif answer == K(-1):
return -1

elif answer == K(0):

return O

def legendresymbol(x,y):

factors = F.factor(y)
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answer = prod([residuesymbol(x,p[0]) for p in factors if p[1]%2])

return answer

def kappa(A):
c = A[1][0]
d = A[1][1]

return legendresymbol(c,d)

matrixlist = []
for kk in range(4):
gamma = gammainverselist [kk]
for ii in range(64):
r = representatives[ii]
answer = Decomposition(gamma*r)
newrep = answer [0] *answer [1]
jj = representatives.index(newrep)
kappavalue = kappa(answer[2])

matrixlist.append([ii,jj,kk,kappavalue])

def func(ii,jj,kk):
for entry in matrixlist:
if entry[0]==ii and entry[1]==jj and entry[2]==kk:
return entry[3]

return O

Finally,

gammaactionK = [Matrix([[func(ii,jj,kk) for ii in range(64)]

for jj in range(64)]) for kk in range(4)]
Then we put

kernels = [(1-gammaactionK[kk]).right_kernel() for kk in range(4)]
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generators = []
for W in kernels:

generators=generators+W.basis()

L = 2772764

subspace_Z=L.span(generators)
The group ‘H2Z’ is H*(~ \D', kz).
H2_Z=L.quotient (subspace_Z)

The output is that "H27Z’ has rank 5.

A.2 Boundary cohomology
The purpose of this appendix is to show that

H*(Do, Eyo(F)) 2 F, and

H?(T,Ind 1. (kp) 2 Eyo(F)) = F©®,

Recall that if 2 is invertible in M, then:

H*(Too, M) 2= MEY /(1 — )M + (1 = d)M + (1 — €)M).

We define, as in Appendix A.1,

F.<i> = NumberField(x~2+1)

R = F.ring of_integers()

pi = F.ideal(1+i)

k = R.residue_field(pi,’b?)

kk = R.quotient_ring(2,’b’)

kkk = R.quotient_ring(2*pi,’b’)
kkkk = R.quotient_ring(4,’b’)
kkkkk = R.quotient_ring(4*pi,’b’)
M

MatrixSpace(F,2)

m = MatrixSpace(k,2)

(A.1)
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mm = MatrixSpace(kk,2)
mmm = MatrixSpace(kkk,2)

mmmm = MatrixSpace (kkkk,2)

quotient0 = [M([1,0,0,11),M([0,1,-1,0]),M([1,1,0,1]),M([1,0,1,1]),
M([1,-1,1,0]), M([0,-1,1,1])]

quotientl = [M([1,0,0,1]),M([i,0,0,-1]), M([1,1+i,0,1]),
M([1,0,1+i,1]), M([i,1+i,0,-i]), M([i,0,1+i,-i]),
MC[1,1+1,1+1,1+42%1]), M([i,1+i,1+1,2-1])]

quotient2 = [M([1,0,0,1]),M([1,2,0,1]), M([1,0,2,1]),
M([-1,0,0,-1]1), M([-1,2,0,-1]), M([-1,0,2,-1]), M([1,2,2,5]),
M([-5,2,2,-11)]

quotient3 = [M([1,0,0,1]1),M([3-6%i,4,-4,-1-2*i]), M([1,2+2%i,0,1]),
M([1,0,2+2%i,1]), M([-5+2%1i,2+2%i,4,-1-2%i]),
M([-5+2%1i,4,2+2%i,-1-2%i]), M([1,2+2%1,2+2%i,1+8%i]),
M([-14+2%1i,242%1i,2+2%1i,3-2%i] )]

quotientOm = [m([1,0,0,1]),m([0,1,1,0]),m([1,1,0,1]),m([1,0,1,1]),
m([1,1,1,0]),m([0,1,1,1])]

quotientimm = [mm([1,0,0,1]), mm([i,0,0,-1]), mm([1,1+1,0,1]),
mm([1,0,1+i,1]), mm([i,1+i,0,-1]), mm([i,0,1+i,-i]),
mm([1,1+1,1+31,1+42%i]), mm([i,1+i,1+i,2-i])]

quotient2mmm = [mmm([1,0,0,1]), mmm([1,2,0,1]),

mmm([1,0,2,1]), mmm([-1,0,0,-1]),
mmm([-1,2,0,-11), mmm([-1,0,2,-11),

mmm ([1,2,2,5]), mmm([-5,2,2,-1])]
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quotient3mmmm = [mmmm([1,0,0,1]), mmmm([3-6%i,4,-4,-1-2*i]),
mmmm ( [1,2+2%i,0,1]), mmmm([1,0,2+2%i,1]),

mmmm ( [-5+2%1i,2+2%1i,4,-1-2*%i]), mmmm([-5+2%1,4,2+2%i,-1-2%1i]),
mmmm ( [1,2+2%1,2+42%1,1+8%1]), mmmm([-1+2%1,2+2%i,2+2%i,3-2%i])]

representatives = [axb for a in quotientl for b in quotient3]

def Decomposition(gamma) :
r = quotientOm.index (m(gamma))
rep0 = quotientO[r]
gamma?2 = gammax*repO.inverse()
a = quotientlmm.index (mm(gamma2))
repl = quotientl[a]
gamma3 = repl”-1xgamma2
u = quotient2mmm.index (mmm(gamma3))
rep2 = quotient?2[u]
gamma4 = gamma3*rep2”-1
b = quotient3mmmm.index (mmmm(gamma4))
rep3 = quotient3[b]
gammab = rep3”-1*gamma4d

return([repl,rep3, gammab,rep2*rep0])
We define the function “kappa” as in Appendix A.1. Put
gammaboundarylist = [M([-1,0,0,i]),M([-1,-1,0,i]), M([1,-1,0,1])]
“sammaboundarylist” is the list of inverses of {a’,d’, €’}. Proceeding:

matrixlist = []
for 11 in range(3):
gamma = gammaboundarylist[11]
for ii in range(64):
r = representatives[ii]

answer = Decomposition(gammax*r)
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newrep = answer [0] *answer [1]
jj = representatives.index(newrep)
kappavalue = kappa(answer[2])

matrixlist.append([ii,jj,11,kappavalue])

def func(ii,jj,kk):
for entry in matrixlist:
if entry[0] == ii and entry[1] == jj and entry[2] == kk:
return entry[3]

return O

Finally, we calculate the quotient (A.1) using the following:

E = MatrixSpace(F,3)

gammaboundaryactionS = [E([-1,0,0,0,1,0,0,0,-1]),
E([-1,i,1,0,1,-2%1,0,0,-1]), E([1,1,1,0,1,2,0,0,1]1)];
gammaboundaryactionSC = [E([-1,0,0,0,1,0,0,0,-1]),
E([-1,-1,1,0,1,2%i,0,0,-1]1),E([1,1,1,0,1,2,0,0,1])]

gammaboundaryactionSSC = []
for r in range(3):
templ = gammaboundaryactionS[r]
for s in range(3):
temp2 = gammaboundaryactionSC[s]
if r ==
answer = templ.tensor_product (temp2)

gammaboundaryactionSSC.append (answer)

Spacel_SSC = MatrixSpace(F,9)
Space2_SSC = F~9
images_SSC = [Spacel_SSC(1-gammaboundaryactionSSC[p]) .image()

for p in range(3)]
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generators_SSC = []
for W in images_SSC:

generators_SSC=generators_SSC+W.basis()

subspace_SSC = Space2_SSC.span(generators_SSC) ;
H2_boundarySSC = Space2_SSC.quotient (subspace_SSC)

The space “H2 boundarySSC” is of dimension 1. Tt is H*(Ts, Eao(F)).
Next we calculate H?(To, Ind 1 (kr) @ Ego(F)).
F

gammaboundaryactionK = [Matrix([[func(ii,jj,kk) for ii in range(64)]

for jj in range(64)]) for kk in range(3)]

gammaboundaryactionKSSC = []
for r in range(3):
templ = gammaboundaryactionSSC[r]
for s in range(3):
temp2 = gammaboundaryactionK[s]
if r ==
answer = templ.tensor_product (temp2)

gammaboundaryactionKSSC.append (answer)

V = MatrixSpace(F,576)
VV = F~576

images_KSSC = [V(1-gammaboundaryactionKSSC[p]).image() for p in range(3)]
generators_KSSC = []
for W in images_KSSC:

generators_KSSC=generators_KSSC+W.basis ()

subspace_KSSC = VV.span(generators_KSSC)

H2_boundaryKSSC = VV.quotient (subspace_KSSC)



Appendix A. Notes on Chapter 2 187

The space “H2 boundaryKSSC” is of dimension 5.

A.3 The definition of cusp cohomology

Suppose that T is a finite index subgroup of SLy(0O), and M is a finite-dimensional
complex representation of Y. The purpose of Appendix A.3 is to show that the def-
inition of the cusp cohomology HY(Y, M) as given in the introduction, is equivalent
to the definition we gave in Section 2.4. More precisely, we must show that the image

of the map (see (0.5))
J + H&(SLa(C), L§(T\SLy(C))™ ® M) — HU (Y, M)

which we shall still denote by HZ, (T, M), is the same as the kernel of the restriction
map HY(Y,M) — HIYU(Y),M) for ¢ = 1,2 (see Section 2.4.1), which we shall
denote by H{ (Y, M).

Recall, from the introduction, that L3(Y\SLy(C)) is the discrete spectrum of
L*(T\SLy(C)). The inclusion of the space of smooth vectors L3(T\SLy(C))>™ into

C*>®(T\SLy(C)) induces a map
HE (SLy(C), L3(T\SLy(C))® @ M) — HY(Y, M)
whose image we denote by H 212)(T, M), and
HY(T, M) C Hj (T, M). (A.2)
On the other hand, Borel [4] has shown that

HY (T, M) C HYY, M). (A.3)

cusp

We observed in Section 1.4.1.2 that the only irreducible unitary representation
(@eoo, H) of SLy(C) which occurs in the discrete spectrum L3(T\SLy(C)) and which
satisfies HJ

cts

(SLy(C), H® M) # 0 is the continuous series representation we denoted
by (@eo(v1,12), B(v1,142)). In fact,

Cifg=1,2
Hgts(G(C>B(V1, 1/2) & M) =

0 otherwise
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One can show that (e (v1,2), B(v1, 1)) is tempered, and by a result of Wallach
and Harish-Chandra [37, Theorem4.3], it occurs with its full multiplicity in the
cuspidal spectrum L2(T\SLy(C)). This means that

ngsp<T7M> = HEIQ)(T7M) (A4)

It follows, from (A.2), (A.3) and (A.4), that

HY_ (Y, M) = HI(T, M).

cusp
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Notes on Chapter 3

B.1 Multiplying double cosets in H(G, ZH)

Recall that the decompositions:

TH=ZHUZHt
THyTH = ZHyZH U ZHytZH (B.1)
THxTH = ZHxZH U ZHatZH U ZHte ZH U ZHtot ZH

THuT'H = ZHuZH U ZHtuZH

(where all the unions are disjoint) gave us a basis for H(G, ZH) as a vector space.
To find its structure as an algebra, we must multiply double cosets, and to do this

we must write each double Z H-coset as a disjoint union of single Z H-cosets:
ZHgZH =| ] ZHgh; where h; € ZH/(ZH N gZHg™").

That is, we must find specific representatives for ZH/(ZH N gZHg™ ') for each

representative g in ZH\G/ZH. Sage gives the following data:

3
JHaZH = U ZHzh; for

=1

hie 9 3 )

189
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3
ZHxtZH = U Z Hath; for

=1

—_
)
—_
—_
—_
)

h; €

)
—_
—_
[\
—_
—_

3
ZHtzZH = U 7 Htxh; for

=1

—_
e}
—_
—_
—
e}

h; €

)
—_
—_
[\
—_
—_

3
ZHtotZH = U 7 Htxth; for

i=1

—_
)
—_
—
—_
e}

h; €

]
—_
—
N}
—_
—_

3
ZHyZH =| | ZHyh; for

i=1

—_
)
—
S
—_
|
—_

h; €

)
—_
—_
—
—_
e}

3
ZHytZH =|_) ZHyth; for

i=1

—_
S
—
o
—_
|
—_

h; €

=)
—_
—
—_
—_
o

6
ZHuZH = U Z Huh; for

i=1

—_
(e
—_
—_
—_
|
—_
o
|
—_
—_
(e
o
|
—_

h; €

)
—_
o
—_
—_
o
—_
=)
—_
—_
—_
—_

and

6
ZHutZH = U 7 Huth; for

i=1

—_
o
—
[a—
—_

|
—
o

|
—_
—_

o

o
|

—_

h; €

=)
—_
e}
—_
—_
e}
—_
e}
—_
—
—_
—
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A “degree” argument can help us check the above decompositions. For example,
by (B.1),
deg,y(THyTH) = deg,y(ZHyZH U ZHytZH)

Since deg, (T H) = 2, it follows that deg,y(THyTH) = 2 x deg;y(THyTH) =
2% 3 = 6. Since

|\ZH/(ZH NyZHy )| = |ZH/(ZH NytZH(yt)™")

Y

we must have deg,y(ZHyZH) = deg,y(ZHytZH) = 3.

The following code multiplies the double cosets:

HZdoublecosets = [mmmm([1,0,0,1]),z,z*t,z*y,z*xy*t,x,X*t, t*xX, t*x*t,

u,uxt]

littlehdashforx = [mmmm([1,0,0,1]) ,mmmm([1,1,1,2]),mmmm([1,0,1,1])]

littlehdashforxt = [mmmm([1,0,0,1]) ,mmmm([1,1,1,2]),mmmm([1,0,1,1])]
littlehdashforyt = [mmmm([1,0,0,1]) ,mmmm([1,0,1,1]) ,mmmm([1,-1,1,0])]
littlehdashfory = [mmmm([1,0,0,1]) ,mmmm([1,0,1,1]) ,mmmm([1,-1,1,0])]
littlehdashforu = [mmmm([1,0,0,1]),mmmm([1,1,0,1]) ,mmmm([1,-1,1,0]),

mmmm([0,-1,1,0]) ,mmmm([1,0,1,1]) ,mmmm([0,-1,1,1]1)]

littlehdashfortu = [mmmm([1,0,0,1]) ,mmmm([1,1,0,1]) ,mmmm([1,-1,1,0]),

mmmm([0,-1,1,0]) ,mmmm([1,0,1,1]) ,mmmm([0,-1,1,1]1)]
littlehdashfortx = [mmmm([1,0,0,1]) ,mmmm([1,1,1,2]) ,mmmm([1,0,1,1])]

littlehdashfortxt = [mmmm([1,0,0,1]) ,mmmm([1,1,1,2]) ,mmmm([1,0,1,1])]

for hl in littlehdashforx:

for h2 in littlehdashfory:
answer = x*xhl*y*xh2

for b in ZH:
for jj in range(11):
if mmmm(b*answer) == HZdoublecosets[jj]:
print (jj)
This code as written, returned, for example, [8,9]. That is,

&% = txt + G
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