Mohammady, MH;
(2013)
Nuclear-electronic spin systems, magnetic resonance, and quantum information processing.
Doctoral thesis , UCL (University College London).
Preview |
PDF
MOHAMMAD_HAMED_MOHAMMADY_THESIS.pdf._WITH_COPYRIGHT_IMAGES_REMOVED.pdf Download (3MB) |
Abstract
A promising platform for quantum information processing is that of silicon impurities, where the quantum states are manipulated by magnetic resonance. Such systems, in abstraction, can be considered as a nucleus of arbitrary spin coupled to an electron of spin one-half via an isotropic hyperfine interaction. We therefore refer to them as nuclear-electronic spin systems. The traditional example, being subject to intensive experimental studies, is that of phosphorus doped silicon (Si:P) which couples a spin one-half electron to a nucleus of the same spin, with a hyperfine strength of 117.5 MHz. More recently, bismuth doped silicon (Si:Bi) has been suggested as an alternative instantiation of nuclear-electronic spin systems, differing from Si:P by its larger nuclear spin and hyperfine strength of 9/2 and 1.4754 GHz respectively. The aim of this thesis has been to develop a model that is capable of predicting the magnetic resonance properties of nuclear-electronic spin systems. The theoretical predictions of this model have been tested against experimental data collected on Si:Bi at 4.044 GHz, and have proven quite successful. Furthermore, the larger nuclear spin and hyperfine strength of Si:Bi, compared with that of Si:P, are predicted to offer advantages for quantum information processing. Most notable amongst these is that magnetic field-dependent two-dimensional decoherence free subspaces, called optimal working points, have been identified to exist in Si:Bi, but not Si:P.
Type: | Thesis (Doctoral) |
---|---|
Title: | Nuclear-electronic spin systems, magnetic resonance, and quantum information processing |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright images have been removed from the ethesis |
Keywords: | quantum information, magnetic resonance |
UCL classification: | UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/1392107 |
Archive Staff Only
View Item |