UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Multiproxy evidence for abrupt climate change impacts on terrestrial and freshwater ecosystems in the Ol'khon region of Lake Baikal, central Asia

Mackay, AW; Bezrukova, EV; Boyle, JF; Holmes, JA; Panizzo, VN; Piotrowska, N; Shchetnikov, A; ... White, D; + view all (2013) Multiproxy evidence for abrupt climate change impacts on terrestrial and freshwater ecosystems in the Ol'khon region of Lake Baikal, central Asia. Quaternary International , 290-1 pp. 46-56. 10.1016/j.quaint.2012.09.031. Green open access

[thumbnail of Mackay_QUATINT-D-12-00191R1.pdf]
Preview
Text
Mackay_QUATINT-D-12-00191R1.pdf - Accepted Version

Download (1MB) | Preview

Abstract

A palaeolimnological study of Lake Khall was undertaken to reconstruct impacts from five thousand years of climate change and human activity in the Ol'khon region of Lake Baikal. Taiga biome dominated regional landscapes, although significant compositional turnover occurred due to the expansion of eurythermic and drought resistant Scots pine. Climate during the mid-Holocene was wetter than the present, and Lake Khall was fresh, with abundant molluscs. By 4.4 cal ka BP, sedimentary geochemistry indicated a gradual change in lake water chemistry with an increase in lake salinity up to the present day, most likely controlled by groundwater influences. Vegetation turnover rate was highest between 2.75 and 2.48 cal ka BP, with the onset of drier, more continental climate, which resulted in an influx of aeolian particles to the lake. This abrupt shift was coincident with ice rafted debris event (IRD-2) in North Atlantic sediments and an attenuation of the East Asian summer monsoon. A second arid period occurred shortly afterwards (2.12–1.87 cal ka BP) which resulted in the decline in ostracod numbers, especially Candona sp. A rather more quiescent, warmer period followed, between 1.9 and 0.7 cal ka BP, with very little change in vegetation composition, and low amounts of detrital transfer from catchment to the lake. Peak reconstructed temperatures (and low amounts of annual precipitation) were concurrent with the Medieval Climate Anomaly. Between 0.77 and 0.45 cal ka BP, climate in the Ol'khon region became colder and wetter, although Lake Khall did not become fresher. Cold, wet conditions are seen at other sites around Lake Baikal, and therefore represent a regional response to the period concurrent with the Little Ice Age and IRD-0. After AD 1845 the region warms, and Pediastrum appears in the lake in high abundances for the first time. This increase is ascribed to nutrient enrichment in the lake, linked to the rapid increase in regional pastoral farming.

Type: Article
Title: Multiproxy evidence for abrupt climate change impacts on terrestrial and freshwater ecosystems in the Ol'khon region of Lake Baikal, central Asia
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.quaint.2012.09.031
Publisher version: http://dx.doi.org/10.1016/j.quaint.2012.09.031
Language: English
Additional information: Copyright © 2013. This manuscript version is published under a Creative Commons Attribution Non-commercial Non-derivative 4.0 International licence (CC BY-NC-ND 4.0). This licence allows you to share, copy, distribute and transmit the work for personal and non-commercial use providing author and publisher attribution is clearly stated. Further details about CC BY licences are available at http://creativecommons.org/licenses/by/4.0. Access may be initially restricted by the publisher.
Keywords: science & technology, physical sciences, geography, physical, geosciences, multidisciplinary, physical geography, geology, geography, physical, geosciences, multidisciplinary, Holocene vegetation, interglacial vegetation, southern Siberia, pollen records, sediments, reconstruction, age, paleoecology, variability, dynamics
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL SLASH
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS > Dept of Geography
URI: https://discovery.ucl.ac.uk/id/eprint/1372924
Downloads since deposit
227Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item