Casini, L;
Illari, PM;
Russo, F;
Williamson, J;
(2011)
Models for prediction, explanation and control: Recursive Bayesian networks.
THEORIA. An International Journal for Theory, History and Foundations of Science
, 26
(1)
5 - 33.
Preview |
Text
Illari_6 RBNs Online Version.pdf Download (436kB) | Preview |
Abstract
The Recursive Bayesian Net (RBN) formalism was originally developed for modelling nested causal relationships. In this paper we argue that the formalism can also be applied to modelling the hierarchical structure of mechanisms. The resulting network contains quantitative information about probabilities, as well as qualitative information about mechanistic structure and causal relations. Since information about probabilities, mechanisms and causal relations is vital for prediction, explanation and control respectively, an RBN can be applied to all these tasks. We show in particular how a simple two-level RBN can be used to model a mechanism in cancer science. The higher level of our model contains variables at the clinical level, while the lower level maps the structure of the cell's mechanism for apoptosis.
Type: | Article |
---|---|
Title: | Models for prediction, explanation and control: Recursive Bayesian networks |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | http://www.ehu.eus/ojs/index.php/THEORIA/article/v... |
Language: | English |
Additional information: | THEORIA is published under a Creative Commons Licence: Attribution-Noncommercial-No Derivative Works 2.5 Generic (http://creativecommons.org/licenses/by-nc-nd/2.5/deed.en) |
Keywords: | Bayesian network; Causal model; Mechanism; Explanation; Prediction; Control |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Science and Technology Studies |
URI: | https://discovery.ucl.ac.uk/id/eprint/1370007 |
Archive Staff Only
View Item |