UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Ageing increases vulnerability to aβ42 toxicity in Drosophila.

Rogers, I; Kerr, F; Martinez, P; Hardy, J; Lovestone, S; Partridge, L; (2012) Ageing increases vulnerability to aβ42 toxicity in Drosophila. PLOS One , 7 (7) , Article e40569. 10.1371/journal.pone.0040569. Green open access

[thumbnail of 1359369.pdf]
Preview
PDF
1359369.pdf

Download (512kB)

Abstract

Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's Disease (AD), for reasons that are not clear. The association could indicate that the duration or degree of exposure to toxic proteins is important for pathology, or that age itself increases susceptibility to protein toxicity. Using an inducible Drosophila model of AD, we investigated these possibilities by varying the expression of an Aβ42 transgene in neurons at different adult ages and measuring the effects on Aβ42 levels and associated pathological phenotypes. Acute induction of Arctic Aβ42 in young adult flies resulted in rapid expression and clearance of mRNA and soluble Arctic Aβ42 protein, but in irreversible expression of insoluble Arctic Aβ42 peptide. Arctic Aβ42 peptide levels accumulated with longer durations of induction, and this led to a dose-dependent reduction in negative geotaxis and lifespan. For a standardised level of mRNA expression, older flies had higher levels of Arctic Aβ42 peptide and associated toxicity, and this correlated with an age-dependent reduction in proteasome activity. Equalising Aβ42 protein at different ages shortened lifespan in correlation with the duration of exposure to the peptide, suggesting that Aβ42 expression accumulates damage over time. However, the relative reduction in lifespan compared to controls was greater in flies first exposed to the peptide at older ages, suggesting that ageing itself also increases susceptibility to Aβ42 toxicity. Indeed older flies were more vulnerable to chronic Aβ42 toxicity even with a much lower lifetime exposure to the peptide. Finally, the persistence of insoluble Aβ42 in both young and old induced flies suggests that aggregated forms of the peptide cause toxicity in later life. Our results suggest that reduced protein turnover, increased duration of exposure and increased vulnerability to protein toxicity at later ages in combination could explain the late age-of-onset of neurodegenerative phenotypes.

Type: Article
Title: Ageing increases vulnerability to aβ42 toxicity in Drosophila.
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pone.0040569
Publisher version: http://dx.doi.org/10.1371/journal.pone.0040569
Language: English
Additional information: © 2012 Rogers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This work was supported by Eisai London Research Laboratories (UK), the Wellcome Trust and Alzheimer's Research UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment
URI: https://discovery.ucl.ac.uk/id/eprint/1359369
Downloads since deposit
224Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item