Janssen, CP;
(2012)
Understanding Strategic Adaptation in Dual-Task Situations as Cognitively Bounded Rational Behavior.
Doctoral thesis , UCL (University College London).
Preview |
PDF
PhDThesis_CP_Janssen_UCL_2012.pdf Available under License : See the attached licence file. Download (8MB) |
Abstract
In this thesis I explored when people interleave attention in dual-task settings. The hypothesis is that people try to perform in a cognitively bounded rational way. Performance is limited by constraints that come from the task environment and cognition. If, given these constraints, multiple strategies for interleaving tasks are available, then people will interleave tasks in a way that aligns with their local priority objective (Chapter 3), or which maximizes the value of an objective payoff function that evaluates performance (Chapter 4). This hypothesis was tested using a combination of experimental studies and computational cognitive models. Across a series of studies, the interplay between different constraints was investigated. In Chapters 5 and 6, I developed mathematical models to study what task combinations in general allowed for “ideal payoff manipulations” to study task interleaving. The work contributed to the existing literature in four ways: (1) it provided an overarching theory of skilled human dual-task performance and tested this in relatively applied settings, (2) the theory was formalized in computational cognitive models that can predict performance of unobserved strategies and that can bracket the (optimal) performance space, (3) linear and logarithmic tasks were identified as an ideal combination for achieving ideal payoff manipulations, and (4) results demonstrated that in multitasking situations attention is not necessarily interleaved solely at chunk boundaries and other “natural breakpoints”, but that this depends on a person’s priorities. The work has implications for driver distraction research, in that it helps in systematically understanding the performance trade-offs that people face when multitasking. Moreover, the modeling framework could be used for model-based evaluation of new mobile interfaces. Finally, the demonstration that priorities can strongly influence multitasking performance highlights the importance of public safety campaigns that emphasize awareness of driver safety. Limitations and further implications are discussed.
Archive Staff Only
View Item |