UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

On equilibrium structures of the water molecule

Császár, A.G.; Czakó, G.; Furtenbacher, T.; Tennyson, J.; Szalay, V.; Shirin, S.V.; Zobov, N.F.; (2005) On equilibrium structures of the water molecule. Journal of Chemical Physics , 122 (21) p. 214305. 10.1063/1.1924506. Green open access

[thumbnail of 355.pdf]
Preview
PDF
355.pdf

Download (279kB)

Abstract

Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky [ ibid. 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3x10(-5) A and 0.02 degrees for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is r(e)(BO)=0.957 82 A and theta(e)(BO)=104.48(5)degrees, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of (H2O)-O-16 is r(e)(ad)=0.957 85 A and theta(e)(ad)=104.50(0)degrees, respectively, while those of (D2O)-O-16 are r(e)(ad)=0.957 83 A and theta(e)(ad)=104.49(0)degrees. Pure ab initio prediction of J=1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002 cm(-1) for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05 cm(-1) (or the lower ones to better than 0.0035 cm(-1)) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A(0) and B-0. The small residual deviations in the effective rotational constants are due to centrifugal distortion, electronic, and non-Born-Oppenheimer effects. The spectroscopic (nonadiabatic) equilibrium structural parameters of (H2O)-O-16, obtained from experimentally determined A(0)(') and B-0(') rotational constants corrected empirically to obtain equilibrium rotational constants, are r(e)(sp)=0.957 77 A and theta(e)(sp)=104.48 degrees.

Type: Article
Title: On equilibrium structures of the water molecule
Open access status: An open access version is available from UCL Discovery
DOI: 10.1063/1.1924506
Publisher version: http://dx.doi.org/10.1063/1.1924506
Language: English
Additional information: Copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery.ucl.ac.uk/id/eprint/1332
Downloads since deposit
823Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item