Ignatyev, K;
Munro, PRT;
Speller, RD;
Olivo, A;
(2011)
Effects of signal diffusion on x-ray phase contrast images.
Review of Scientific Instruments
, 82
(7)
, Article 073702. 10.1063/1.3606442.
Preview |
Text
Olivo_1.3606442.pdf - Published Version Download (499kB) | Preview |
Abstract
We discuss the problem of signal diffusion among neighbouring pixels in x-ray phase contrast imaging (XPCi) specifically for coded-aperture (CA) XPCi, but many of the discussed observations are directly transferable to other XPCi modalities. CA XPCi exploits the principle of pixel edge illumination by means of two CA masks. The first mask, placed in contact with the detector, creates insensitive regions between adjacent pixels; the second one, placed immediately before the sample, creates individual beams impinging on the boundaries between sensitive and insensitive regions on the detector, as created by the detector mask. In this way, edge illumination is achieved for all pixels of an area detector illuminated by a divergent and polychromatic beam generated by a conventional source. As the detector mask redefines the resolution properties of the detector, sample dithering can be used to effectively increase the system spatial resolution, without having to apply any post-processing procedure (e. g., deconvolution). This however creates artifacts in the form of secondary fringes (which have nothing to do with phase-related secondary fringes) if there is signal diffusion between adjacent pixels. In non-dithered images, signal diffusion between adjacent pixels causes a reduction in image contrast. This effect is investigated both theoretically and experimentally, and its direct implications on image quality are discussed. The interplay with the sample positioning with respect to the detector pixel matrix, which also has an effect on the obtained image contrast, is also discussed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3606442]
Type: | Article |
---|---|
Title: | Effects of signal diffusion on x-ray phase contrast images |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1063/1.3606442 |
Publisher version: | http://dx.doi.org/10.1063/1.3606442 |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/1318943 |
Archive Staff Only
View Item |