UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures

Valori, G; Démoulin, P; van Driel-Gesztelyi, L; Green, LM; Vargas Domínguez, S; Wallace, A; Baker, D; (2012) Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures. Solar Physics , 278 (1) 73 - 97. 10.1007/s11207-011-9865-8. Green open access

[thumbnail of Valori_etal_2012_SolarPhysics_278_73.pdf]
Preview
PDF
Valori_etal_2012_SolarPhysics_278_73.pdf

Download (1MB)

Abstract

We study the flux emergence process in NOAA active region 11024, between 29 June and 7 July 2009, by means of multi-wavelength observations and nonlinear force-free extrapolation. The main aim is to extend previous investigations by combining, as much as possible, high spatial resolution observations to test our present understanding of small-scale (undulatory) flux emergence, whilst putting these small-scale events in the context of the global evolution of the active region. The combination of these techniques allows us to follow the whole process, from the first appearance of the bipolar axial field on the east limb, until the buoyancy instability could set in and raise the main body of the twisted flux tube through the photosphere, forming magnetic tongues and signatures of serpentine field, until the simplification of the magnetic structure into a main bipole by the time the active region reaches the west limb. At the crucial time of the main emergence phase high spatial resolution spectropolarimetric measurements of the photospheric field are employed to reconstruct the three-dimensional structure of the nonlinear force-free coronal field, which is then used to test the current understanding of flux emergence processes. In particular, knowledge of the coronal connectivity confirms the identity of the magnetic tongues as seen in their photospheric signatures, and it exemplifies how the twisted flux, which is emerging on small scales in the form of a sea-serpent, is subsequently rearranged by reconnection into the large-scale field of the active region. In this way, the multi-wavelength observations combined with a nonlinear force-free extrapolation provide a coherent picture of the emergence process of small-scale magnetic bipoles, which subsequently reconnect to form a large-scale structure in the corona. © 2011 Springer Science+Business Media B.V.

Type: Article
Title: Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures
Open access status: An open access version is available from UCL Discovery
DOI: 10.1007/s11207-011-9865-8
Publisher version: http://dx.doi.org/10.1007/s11207-011-9865-8
Language: English
Additional information: The final publication is available at link.springer.com
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics
URI: https://discovery.ucl.ac.uk/id/eprint/1303287
Downloads since deposit
215Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item