Key, Jana;
Almaguer-Mederos, Luis-Enrique;
Kandi, Arvind Reddy;
Fellenz, Meike;
Gispert, Suzana;
Köpf, Gabriele;
Meierhofer, David;
... Auburger, Georg; + view all
(2025)
Conditional ATXN2L-Null in Adult Frontal Cortex CamK2a+ Neurons Does Not Cause Cell Death but Restricts Spontaneous Mobility and Affects the Alternative Splicing Pathway.
Cells
, 14
(19)
, Article 1532. 10.3390/cells14191532.
Preview |
Text
2025_Conditional ATXN2L-Null in Adult Frontal Cortex CamK2a+.pdf - Published Version Download (2MB) | Preview |
Abstract
The Ataxin-2-like (ATXN2L) protein is required to survive embryonic development, as documented in mice with the constitutive absence of the ATXN2L Lsm, LsmAD, and PAM2 domains due to knock-out (KO) of exons 5–8 with a frameshift. Its less abundant paralog, Ataxin-2 (ATXN2), has an extended N-terminus, where a polyglutamine domain is prone to expansions, mediating vulnerability to the polygenic adult motor neuron disease ALS (Amyotrophic Lateral Sclerosis) or causing the monogenic neurodegenerative processes of Spinocerebellar Ataxia Type 2 (SCA2), depending on larger mutation sizes. Here, we elucidated the physiological function of ATXN2L by deleting the LsmAD and PAM2 motifs via loxP-mediated KO of exons 10–17 with a frameshift. Crossing heterozygous floxed mice with constitutive Cre-deleter animals confirmed embryonic lethality among offspring. Crossing with CamK2a-CreERT2 mice and injecting tamoxifen for conditional deletion achieved chimeric ATXN2L absence in CamK2a-positive frontal cortex neurons and reduced spontaneous horizontal movement. Global proteome profiling of frontal cortex homogenate showed ATXN2L levels decreased to 75% and dysregulations enriched in the alternative splicing pathway. Nuclear proteins with Sm domains are critical to performing splicing; therefore, our data suggest that the Like-Sm (Lsm, LsmAD) domains in ATXN2L serve a role in splice regulation, despite their perinuclear location.
| Type: | Article |
|---|---|
| Title: | Conditional ATXN2L-Null in Adult Frontal Cortex CamK2a+ Neurons Does Not Cause Cell Death but Restricts Spontaneous Mobility and Affects the Alternative Splicing Pathway |
| Open access status: | An open access version is available from UCL Discovery |
| DOI: | 10.3390/cells14191532 |
| Publisher version: | https://doi.org/10.3390/cells14191532 |
| Language: | English |
| Additional information: | © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| Keywords: | Poly(A)-binding protein; ribonucleoproteins; stress granules; open field locomotion; label-free mass spectrometry; NAA38; NSUN2; RPS3; MRPL14; SRSF11 |
| UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Department of Neuromuscular Diseases |
| URI: | https://discovery.ucl.ac.uk/id/eprint/10215975 |
Archive Staff Only
![]() |
View Item |

