UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Deep Learning Modeling to Differentiate Multiple Sclerosis From MOG Antibody-Associated Disease

Cortese, Rosa; Sforazzini, Francesco; Gentile, Giordano; de Mauro, Anna; Luchetti, Ludovico; Amato, Maria Pia; Apostolos-Pereira, Samira Luisa; ... De Stefano, Nicola; + view all (2025) Deep Learning Modeling to Differentiate Multiple Sclerosis From MOG Antibody-Associated Disease. Neurology , 105 (6) , Article e214075. 10.1212/WNL.0000000000214075. Green open access

[thumbnail of Deep Learning Modeling to Differentiate Multiple Sclerosis From MOG Antibody-Associated Disease.pdf]
Preview
PDF
Deep Learning Modeling to Differentiate Multiple Sclerosis From MOG Antibody-Associated Disease.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Background and Objectives:Multiple sclerosis (MS) is common in adults while myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is rare. Our previous machine-learning algorithm, using clinical variables, ≤6 brain lesions, and no Dawson fingers, achieved 79% accuracy, 78% sensitivity, and 80% specificity in distinguishing MOGAD from MS but lacked validation. The aim of this study was to (1) evaluate the clinical/MRI algorithm for distinguishing MS from MOGAD, (2) develop a deep learning (DL) model, (3) assess the benefit of combining both, and (4) identify key differentiators using probability attention maps (PAMs). Methods:This multicenter, retrospective, cross-sectional MAGNIMS study included scans from 19 centers. Inclusion criteria were as follows: adults with non-acute MS and MOGAD, with high-quality T2-fluid-attenuated inversion recovery and T1-weighted scans. Brain scans were scored by 2 readers to assess the performance of the clinical/MRI algorithm on the validation data set. A DL-based classifier using a ResNet-10 convolutional neural network was developed and tested on an independent validation data set. PAMs were generated by averaging correctly classified attention maps from both groups, identifying key differentiating regions. Results:We included 406 MRI scans (218 with relapsing remitting MS [RRMS], mean age: 39 years ±11, 69% F; 188 with MOGAD, age: 41 years ±14, 61% F), split into 2 data sets: a training/testing set (n = 265: 150 with RRMS, age: 39 years ±10, 72% F; 115 with MOGAD, age: 42 years ±13, 61% F) and an independent validation set (n = 141: 68 with RRMS, age: 40 years ±14, 65% F; 73 with MOGAD, age: 40 years ±15, 63% F). The clinical/MRI algorithm predicted RRMS over MOGAD with 75% accuracy (95% CI 67-82), 96% sensitivity (95% CI 88-99), and specificity 56% (95% CI 44-68) in the validation cohort. The DL model achieved 77% accuracy (95% CI 64-89), 73% sensitivity (95% CI 57-89), and 83% specificity (95% CI 65-96) in the training/testing cohort, and 70% accuracy (95% CI 63-77), 67% sensitivity (95% CI 55-79), and 73% specificity (95% CI 61-83) in the validation cohort without retraining. When combined, the classifiers reached 86% accuracy (95% CI 81-92), 84% sensitivity (95% CI 75-92), and 89% specificity (95% CI 81-96). PAMs identified key region volumes: corpus callosum (1872 mm<sup>3</sup>), left precentral gyrus (341 mm<sup>3</sup>), right thalamus (193 mm<sup>3</sup>), and right cingulate cortex (186 mm<sup>3</sup>) for identifying RRMS and brainstem (629 mm<sup>3</sup>), hippocampus (234 mm<sup>3</sup>), and parahippocampal gyrus (147 mm<sup>3</sup>) for identifying MOGAD. Discussion:Both classifiers effectively distinguished RRMS from MOGAD. The clinical/MRI model showed higher sensitivity while the DL model offered higher specificity, suggesting complementary roles. Their combination improved diagnostic accuracy, and PAMs revealed distinct damage patterns. Future prospective studies should validate these models in diverse, real-world settings. Classification of Evidence:This study provides Class III evidence that both a clinical/MRI algorithm and an MRI-based DL model accurately distinguish RRMS from MOGAD.

Type: Article
Title: Deep Learning Modeling to Differentiate Multiple Sclerosis From MOG Antibody-Associated Disease
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1212/WNL.0000000000214075
Publisher version: https://doi.org/10.1212/wnl.0000000000214075
Language: English
Additional information: Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Keywords: Science & Technology, Life Sciences & Biomedicine, Clinical Neurology, Neurosciences & Neurology, DIAGNOSIS
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neuroinflammation
URI: https://discovery.ucl.ac.uk/id/eprint/10214555
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item