Cortese, Rosa;
Sforazzini, Francesco;
Gentile, Giordano;
de Mauro, Anna;
Luchetti, Ludovico;
Amato, Maria Pia;
Apostolos-Pereira, Samira Luisa;
... De Stefano, Nicola; + view all
(2025)
Deep Learning Modeling to Differentiate Multiple Sclerosis From MOG Antibody-Associated Disease.
Neurology
, 105
(6)
, Article e214075. 10.1212/WNL.0000000000214075.
Preview |
PDF
Deep Learning Modeling to Differentiate Multiple Sclerosis From MOG Antibody-Associated Disease.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Background and Objectives:Multiple sclerosis (MS) is common in adults while myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is rare. Our previous machine-learning algorithm, using clinical variables, ≤6 brain lesions, and no Dawson fingers, achieved 79% accuracy, 78% sensitivity, and 80% specificity in distinguishing MOGAD from MS but lacked validation. The aim of this study was to (1) evaluate the clinical/MRI algorithm for distinguishing MS from MOGAD, (2) develop a deep learning (DL) model, (3) assess the benefit of combining both, and (4) identify key differentiators using probability attention maps (PAMs). Methods:This multicenter, retrospective, cross-sectional MAGNIMS study included scans from 19 centers. Inclusion criteria were as follows: adults with non-acute MS and MOGAD, with high-quality T2-fluid-attenuated inversion recovery and T1-weighted scans. Brain scans were scored by 2 readers to assess the performance of the clinical/MRI algorithm on the validation data set. A DL-based classifier using a ResNet-10 convolutional neural network was developed and tested on an independent validation data set. PAMs were generated by averaging correctly classified attention maps from both groups, identifying key differentiating regions. Results:We included 406 MRI scans (218 with relapsing remitting MS [RRMS], mean age: 39 years ±11, 69% F; 188 with MOGAD, age: 41 years ±14, 61% F), split into 2 data sets: a training/testing set (n = 265: 150 with RRMS, age: 39 years ±10, 72% F; 115 with MOGAD, age: 42 years ±13, 61% F) and an independent validation set (n = 141: 68 with RRMS, age: 40 years ±14, 65% F; 73 with MOGAD, age: 40 years ±15, 63% F). The clinical/MRI algorithm predicted RRMS over MOGAD with 75% accuracy (95% CI 67-82), 96% sensitivity (95% CI 88-99), and specificity 56% (95% CI 44-68) in the validation cohort. The DL model achieved 77% accuracy (95% CI 64-89), 73% sensitivity (95% CI 57-89), and 83% specificity (95% CI 65-96) in the training/testing cohort, and 70% accuracy (95% CI 63-77), 67% sensitivity (95% CI 55-79), and 73% specificity (95% CI 61-83) in the validation cohort without retraining. When combined, the classifiers reached 86% accuracy (95% CI 81-92), 84% sensitivity (95% CI 75-92), and 89% specificity (95% CI 81-96). PAMs identified key region volumes: corpus callosum (1872 mm<sup>3</sup>), left precentral gyrus (341 mm<sup>3</sup>), right thalamus (193 mm<sup>3</sup>), and right cingulate cortex (186 mm<sup>3</sup>) for identifying RRMS and brainstem (629 mm<sup>3</sup>), hippocampus (234 mm<sup>3</sup>), and parahippocampal gyrus (147 mm<sup>3</sup>) for identifying MOGAD. Discussion:Both classifiers effectively distinguished RRMS from MOGAD. The clinical/MRI model showed higher sensitivity while the DL model offered higher specificity, suggesting complementary roles. Their combination improved diagnostic accuracy, and PAMs revealed distinct damage patterns. Future prospective studies should validate these models in diverse, real-world settings. Classification of Evidence:This study provides Class III evidence that both a clinical/MRI algorithm and an MRI-based DL model accurately distinguish RRMS from MOGAD.
Type: | Article |
---|---|
Title: | Deep Learning Modeling to Differentiate Multiple Sclerosis From MOG Antibody-Associated Disease |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1212/WNL.0000000000214075 |
Publisher version: | https://doi.org/10.1212/wnl.0000000000214075 |
Language: | English |
Additional information: | Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
Keywords: | Science & Technology, Life Sciences & Biomedicine, Clinical Neurology, Neurosciences & Neurology, DIAGNOSIS |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neuroinflammation |
URI: | https://discovery.ucl.ac.uk/id/eprint/10214555 |
Archive Staff Only
![]() |
View Item |