Pal, S;
Gkogkos, G;
Piovesan, J;
Whiteley, Z;
Besenhard, MO;
Storozhuk, L;
Lees, MR;
... Gavriilidis, A; + view all
(2025)
Multistep non-fouling continuous flow synthesis and PEG-functionalisation of biocompatible iron oxide nanoparticles for magnetic hyperthermia, photothermal heating and antifungal activity.
Journal of Flow Chemistry
10.1007/s41981-025-00355-2.
(In press).
Preview |
PDF
Multistep_non-fouling_continuous_flow_synthesis_an.pdf - Published Version Download (1MB) | Preview |
Abstract
An innovative method for synthesising and functionalising iron oxide nanoparticles (IONPs) with polyethylene glycol (PEG) using a continuous three-phase segmented flow reactor is presented. Integration of synthesis and functionalisation within a single reactor platform eliminates the need for laborious batch post-processing steps, such as washing, separation, and dialysis, significantly reducing processing time and enhancing efficiency. The incorporation of oleic acid during the PEG functionalisation step further improved colloidal stability, resulting in 15 nm nanoparticles that remained stable for months without precipitation. FTIR and TGA confirmed successful functionalisation, while XRD showed the absence of byproducts. The PEG-functionalised IONPs exhibited excellent biocompatibility, as confirmed by in vitro cytotoxicity assays, with cell viability exceeding 80% at biologically relevant concentrations. Importantly, the functionalisation process preserved the nanoparticles’ key magnetic and thermal properties, such as saturation magnetisation, magnetic heating efficiency and photothermal response, which are essential for their application in therapeutic settings. Biomedical applications of these functionalised IONPs were explored across multiple domains. The nanoparticles showed efficient magnetic hyperthermia performance under an alternating magnetic field, making them suitable for cancer treatment via localised heating. Additionally, their photothermal properties were assessed under near-infrared (NIR) irradiation, demonstrating temperature rise proportional to concentration, and hence their potential for dual-mode therapeutic applications. Furthermore, antifungal activity assays revealed PEG-functionalised IONP’s efficacy against Trichophyton rubrum, with complete fungal growth inhibition at specific concentrations, underscoring their potential in pharmaceutical antifungal formulations. The continuous flow process developed offers a robust platform for producing multifunctional nanoparticles tailored for biomedical applications, while ensuring compatibility with industrial-scale production demands.
| Type: | Article |
|---|---|
| Title: | Multistep non-fouling continuous flow synthesis and PEG-functionalisation of biocompatible iron oxide nanoparticles for magnetic hyperthermia, photothermal heating and antifungal activity |
| Open access status: | An open access version is available from UCL Discovery |
| DOI: | 10.1007/s41981-025-00355-2 |
| Publisher version: | https://doi.org/10.1007/s41981-025-00355-2 |
| Language: | English |
| Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| Keywords: | Millifuidic reactor, On-line functionalisation, Iron oxide nanoparticles, Magnetic hyperthermia, Photothermal efect, Antifungal activity |
| UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy > Pharmaceutics UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci > Department of Surgical Biotechnology |
| URI: | https://discovery.ucl.ac.uk/id/eprint/10209879 |
Archive Staff Only
![]() |
View Item |

