UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Robust Agents in Open-Ended Worlds

Samvelyan, Mikayel; (2025) Robust Agents in Open-Ended Worlds. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Mikayel_Samvelyan_Robust_Agents_in_Open-Ended_Worlds.pdf]
Preview
Text
Mikayel_Samvelyan_Robust_Agents_in_Open-Ended_Worlds.pdf - Published Version

Download (18MB) | Preview

Abstract

The growing prevalence of artificial intelligence (AI) in various applications underscores the need for agents that can successfully navigate and adapt to an ever-changing, open-ended world. A key challenge is ensuring these AI agents are robust, excelling not only in familiar settings observed during training but also effectively generalising to previously unseen and varied scenarios. In this thesis, we harness methodologies from open-endedness and multi-agent learning to train and evaluate robust AI agents capable of generalising to novel environments, out-of-distribution inputs, and interactions with other co-player agents. We begin by introducing MiniHack, a sandbox framework for creating diverse environments through procedural content generation. Based on the game of NetHack, MiniHack enables the construction of new tasks for reinforcement learning (RL) agents with a focus on generalisation. We then present Maestro, a novel approach for generating adversarial curricula that progressively enhance the robustness and generality of RL agents in two-player zero-sum games. We further probe robustness in multi-agent domains, utilising quality-diversity methods to systematically identify vulnerabilities in state-of-the-art, pre-trained RL policies within the complex video game football domain, characterised by intertwined cooperative and competitive dynamics. Finally, we extend our exploration of robustness to the domain of large language models (LLMs). Here, our focus is on diagnosing and enhancing the robustness of LLMs against adversarial prompts, employing evolutionary search to generate a diverse range of effective inputs that aim to elicit undesirable outputs from an LLM. This work collectively paves the way for future advancements in AI robustness, enabling the development of agents that not only adapt to an ever-evolving world but also thrive in the face of unforeseen challenges and interactions.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Robust Agents in Open-Ended Worlds
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2025. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10208658
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item