Kostic, Vladimir R;
Lounici, Karim;
Halconruy, Hélène;
Devergne, Timothée;
Pontil, Massimiliano;
(2024)
Learning the Infinitesimal Generator
of Stochastic Diffusion Processes.
In: Globersons, A and Mackey, L and Belgrave, D and Fan, A and Paquet, U and Tomczak, J and Zhang, C, (eds.)
Advances in Neural Information Processing Systems 37 (NeurIPS 2024).
(pp. pp. 1-41).
NeurIPS: Vancouver, BC, Canada.
Preview |
Text
NeurIPS-2024-learning-the-infinitesimal-generator-of-stochastic-diffusion-processes-Paper-Conference.pdf - Published Version Download (2MB) | Preview |
Abstract
We address data-driven learning of the infinitesimal generator of stochastic diffusion processes, essential for understanding numerical simulations of natural and physical systems. The unbounded nature of the generator poses significant challenges, rendering conventional analysis techniques for Hilbert-Schmidt operators ineffective. To overcome this, we introduce a novel framework based on the energy functional for these stochastic processes. Our approach integrates physical priors through an energy-based risk metric in both full and partial knowledge settings. We evaluate the statistical performance of a reduced-rank estimator in reproducing kernel Hilbert spaces (RKHS) in the partial knowledge setting. Notably, our approach provides learning bounds independent of the state space dimension and ensures non-spurious spectral estimation. Additionally, we elucidate how the distortion between the intrinsic energy-induced metric of the stochastic diffusion and the RKHS metric used for generator estimation impacts the spectral learning bounds.
Type: | Proceedings paper |
---|---|
Title: | Learning the Infinitesimal Generator of Stochastic Diffusion Processes |
Event: | 38th Conference on Neural Information Processing Systems (NeurIPS 2024) |
ISBN-13: | 9798331314385 |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | https://papers.nips.cc/paper_files/paper/2024/hash... |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10207212 |
Archive Staff Only
![]() |
View Item |