UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Longitudinal analysis within one hospital in sub-Saharan Africa over 20 years reveals repeated replacements of dominant clones of Klebsiella pneumoniae and stresses the importance to include temporal patterns for vaccine design considerations

Heinz, Eva; Pearse, Oliver; Zuza, Allan; Bilima, Sithembile; Msefula, Chisomo; Musicha, Patrick; Siyabu, Patriciah; ... Feasey, Nicholas A; + view all (2024) Longitudinal analysis within one hospital in sub-Saharan Africa over 20 years reveals repeated replacements of dominant clones of Klebsiella pneumoniae and stresses the importance to include temporal patterns for vaccine design considerations. Genome Medicine , 16 (1) , Article 67. 10.1186/s13073-024-01342-3. Green open access

[thumbnail of heinz_et_al.pdf]
Preview
Text
heinz_et_al.pdf - Published Version

Download (2MB) | Preview

Abstract

BACKGROUND: Infections caused by multidrug-resistant gram-negative bacteria present a severe threat to global public health. The WHO defines drug-resistant Klebsiella pneumoniae as a priority pathogen for which alternative treatments are needed given the limited treatment options and the rapid acquisition of novel resistance mechanisms by this species. Longitudinal descriptions of genomic epidemiology of Klebsiella pneumoniae can inform management strategies but data from sub-Saharan Africa are lacking. METHODS: We present a longitudinal analysis of all invasive K. pneumoniae isolates from a single hospital in Blantyre, Malawi, southern Africa, from 1998 to 2020, combining clinical data with genome sequence analysis of the isolates. RESULTS: We show that after a dramatic increase in the number of infections from 2016 K. pneumoniae becomes hyperendemic, driven by an increase in neonatal infections. Genomic data show repeated waves of clonal expansion of different, often ward-restricted, lineages, suggestive of hospital-associated transmission. We describe temporal trends in resistance and surface antigens, of relevance for vaccine development. CONCLUSIONS: Our data highlight a clear need for new interventions to prevent rather than treat K. pneumoniae infections in our setting. Whilst one option may be a vaccine, the majority of cases could be avoided by an increased focus on and investment in infection prevention and control measures, which would reduce all healthcare-associated infections and not just one.

Type: Article
Title: Longitudinal analysis within one hospital in sub-Saharan Africa over 20 years reveals repeated replacements of dominant clones of Klebsiella pneumoniae and stresses the importance to include temporal patterns for vaccine design considerations
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/s13073-024-01342-3
Publisher version: https://doi.org/10.1186/s13073-024-01342-3
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Keywords: AMR, Malawi, Genome surveillance, Healthcare-associated, Nosocomial infections, Surface antigens, Neonatal infection, Sepsis, Capsular polysaccharide, ESKAPE
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Infection and Immunity
URI: https://discovery.ucl.ac.uk/id/eprint/10206616
Downloads since deposit
5Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item