UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Integrative Genomic Analysis of Cytogenetically Normal Acute Myeloid Leukaemia

Alhawaj, Ali Fouad Yassin; (2025) Integrative Genomic Analysis of Cytogenetically Normal Acute Myeloid Leukaemia. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Ali Fouad Y Alhawaj - PhD Thesis.pdf]
Preview
Text
Ali Fouad Y Alhawaj - PhD Thesis.pdf - Accepted Version

Download (6MB) | Preview

Abstract

Acute Myeloid Leukaemia (AML) is a haematological malignancy characterized by increased proliferation and blocked differentiation of haematopoietic progenitors. Cytogenetically normal AML (CN-AML) accounts for approximately 50% of all AML cases, with a 5-year survival rate of approximately 50%. Approximately 40% of patients exhibit primary resistance to induction chemotherapy; however, the molecular basis remains poorly understood. Additionally, high SETBP1 expression has been implicated in AML development, although the underlying mechanism remains unclear. This thesis aimed to explore the genomic and transcriptomic profiles of primary-resistant CN-AML in adults, and SETBP1 allele-specific expression (ASE) as a potential cause of high SETBP1 expression. Through whole-exome and RNA sequencing of resistant and matched remission samples, we identified a high presence of UBTF-TD in adult CN-AML (12%) and a higher incidence of WT1 mutations in the resistant versus remission cohorts (29% vs. 10%, p=0.005). However, CRISPR knockout of WT1 in a 416B mouse model did not confer resistance to Cytarabine or Daunorubicin. RNA sequencing indicated enrichment of senescence signatures in the resistant cohort, along with novel gene fusions of LATS2-ZMYM2 (20.9%) and LATS2-HMGB1 (14.3%) in CN-AML. Lastly, integrative genomic and transcriptomic analyses revealed GATA2 and SETBP1 ASE, including a novel non-coding SETBP1 mutation, potentially driving its high expression. Future studies are required to validate UBTF-TD lesions and refine the WT1 knockout, potentially revealing new resistance mechanisms amenable to treatment. LATS2 fusions also require validation to clarify their impact on the tumour-suppressive Hippo pathway. Finally, long-read and whole-genome sequencing may reveal additional mechanisms underlying GATA2 pathogenic expression, whereas functional assays of the novel non-coding SETBP1 variant may elucidate its role in driving AML. These findings may ultimately refine the prognosis and inform new therapeutic strategies for high-risk CN-AML.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Integrative Genomic Analysis of Cytogenetically Normal Acute Myeloid Leukaemia
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2025. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Genetics and Genomic Medicine Dept
URI: https://discovery.ucl.ac.uk/id/eprint/10205407
Downloads since deposit
Loading...
24Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item