UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Immunoregulatory Neuro-Vascularized Osseointegration Driven by Different Nano-Morphological CaTiO3 Bioactive Coatings on Porous Titanium Alloy Scaffolds

Yu, Dongmei; Tang, Zhen; Bao, Shusen; Guo, Shuo; Chen, Changchen; Wu, Qi; Wang, Mo; ... Guo, Zheng; + view all (2025) Immunoregulatory Neuro-Vascularized Osseointegration Driven by Different Nano-Morphological CaTiO3 Bioactive Coatings on Porous Titanium Alloy Scaffolds. Advanced Healthcare Materials , Article e2404647. 10.1002/adhm.202404647. (In press).

[thumbnail of Liu_nano-morphological CaTiO3 bioactive coatings on porous titanium alloy scaffolds.pdf] Text
Liu_nano-morphological CaTiO3 bioactive coatings on porous titanium alloy scaffolds.pdf
Access restricted to UCL open access staff until 25 February 2026.

Download (2MB)

Abstract

Up to now, how to implement the optimal regenerative repair of large load-bearing bone defects using artificial bone prosthesis remains to be an enormous challenge in clinical practice. Titanium-based alloys, especially Ti6Al4V, are applied as artificial bone grafts due to their favorable mechanical property and biocompatibility, assisted by personalized customization of 3D-printing to completely match with the bone defect. However, their bioinert peculiarity restricts osteointegration at the interface between bone and titanium-based implants and bone growth into porous titanium-based scaffolds, for lack of bone regeneration with the aid of blood vessels and neural networks. Of note, ample blood delivery and integral innervation are pivotal to the survival of artificially tissue-engineered bones. Herein, the functionalized surface of 3D printed titanium alloy scaffolds driven immunoregulatory neuro-vascularized osseointegration is delved. Bone-like micro/nano morphology and chemical composition of calcium-rich formula are scrutinized to accelerate the process of bone defect repair, including inflammatory response, angiogenesis, neurogenesis, and osseointegration. Micro/nano-topographic calcium titanate (CaTiO3) coating, especially 10%H2O2-Ca, driven immunoregulatory neuro-vascularized osseointegration is validated and its underlying mechanism is attributed to the signaling pathway of TNF-α /oxidative phosphorylation, providing an effective tactic of the bone tissue-engineered scaffold with surface functionalization-driven immunoregulatory neuro-vascularized osseointegration for clinical large segmental bone defects.

Type: Article
Title: Immunoregulatory Neuro-Vascularized Osseointegration Driven by Different Nano-Morphological CaTiO3 Bioactive Coatings on Porous Titanium Alloy Scaffolds
Location: Germany
DOI: 10.1002/adhm.202404647
Publisher version: https://doi.org/10.1002/adhm.202404647
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: angiogenesis, calcium titanate (CaTiO3), immunoregulatory osseointegration, nanomorphology, neurogenesis
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci > Department of Ortho and MSK Science
URI: https://discovery.ucl.ac.uk/id/eprint/10205288
Downloads since deposit
Loading...
1Download
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item