Weir-McCall, JR;
Debruyn, E;
Harris, S;
Qureshi, NR;
Rintoul, RC;
Gleeson, FV;
Gilbert, FJ;
... Pottinger, G; + view all
(2023)
Diagnostic Accuracy of a Convolutional Neural Network Assessment of Solitary Pulmonary Nodules Compared With PET With CT Imaging and Dynamic Contrast-Enhanced CT Imaging Using Unenhanced and Contrast-Enhanced CT Imaging.
Chest
, 163
(2)
pp. 444-454.
10.1016/j.chest.2022.08.2227.
Preview |
Text
Groves_SPUTNIK main results paper_Thorax R2 20210930 CLEAN.pdf Download (461kB) | Preview |
Abstract
Background: Solitary pulmonary nodules (SPNs) measuring 8 to 30 mm in diameter require further workup to determine the likelihood of malignancy. Research Question: What is the diagnostic performance of a lung cancer prediction convolutional neural network (LCP-CNN) in SPNs using unenhanced and contrast-enhanced CT imaging compared with the current clinical workup? Study Design and Methods: This was a post hoc analysis of the Single Pulmonary Nodule Investigation: Accuracy and Cost-Effectiveness of Dynamic Contrast Enhanced Computed Tomography in the Characterisation of Solitary Pulmonary Nodules trial, a prospective multicenter study comparing the diagnostic accuracy of dynamic contrast-enhanced (DCE) CT imaging with PET imaging in SPNs. The LCP-CNN was designed and validated in an external cohort. LCP-CNN-generated risk scores were created from the noncontrast and contrast-enhanced CT scan images from the DCE CT imaging. The gold standard was histologic analysis or 2 years of follow-up. The area under the receiver operating characteristic curves (AUC) were calculated using LCP-CNN score, maximum standardized uptake value, and DCE CT scan maximum enhancement and were compared using the DeLong test. Results: Two hundred seventy participants (mean ± SD age, 68.3 ± 8.8 years; 49% women) underwent PET with CT scan imaging and DCE CT imaging with CT scan data available centrally for LCP-CNN analysis. The accuracy of the LCP-CNN on the noncontrast images (AUC, 0.83; 95% CI, 0.79-0.88) was superior to that of DCE CT imaging (AUC, 0.76; 95% CI, 0.69-0.82; P = .03) and equal to that of PET with CT scan imaging (AUC, 0.86; 95% CI, 0.81-0.90; P = .35). The presence of contrast resulted in a small reduction in diagnostic accuracy, with the AUC falling from 0.83 (95% CI, 0.79-0.88) on the noncontrast images to 0.80 to 0.83 after contrast (P < .05 for 240 s after contrast only). Interpretation: An LCP-CNN algorithm provides an AUC equivalent to PET with CT scan imaging in the diagnosis of solitary pulmonary nodules. Trial Registration: ClinicalTrials.gov Identifier; No.: NCT02013063
Type: | Article |
---|---|
Title: | Diagnostic Accuracy of a Convolutional Neural Network Assessment of Solitary Pulmonary Nodules Compared With PET With CT Imaging and Dynamic Contrast-Enhanced CT Imaging Using Unenhanced and Contrast-Enhanced CT Imaging |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.chest.2022.08.2227 |
Publisher version: | https://doi.org/10.1016/j.chest.2022.08.2227 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Science & Technology, Life Sciences & Biomedicine, Critical Care Medicine, Respiratory System, General & Internal Medicine, diagnostic test accuracy, machine learning, positron emission tomography computed tomography, solitary pulmonary nodule, tomography, X-ray computed, CANCER, PROBABILITY, BENIGN, TRIAL |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine |
URI: | https://discovery.ucl.ac.uk/id/eprint/10205021 |
Archive Staff Only
![]() |
View Item |