Simegn, Gizeaddis Lamesgin;
Sun, Phillip Zhe;
Zhou, Jinyuan;
Kim, Mina;
Reddy, Ravinder;
Zu, Zhongliang;
Zaiss, Moritz;
... Knutsson, Linda; + view all
(2024)
Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review.
NMR in Biomedicine
, Article e5294. 10.1002/nbm.5294.
(In press).
Text
Motion and Magnetic Field Inhomogeneity Correction Techniques for CEST_review_clean.pdf - Accepted Version Access restricted to UCL open access staff until 12 November 2025. Download (12MB) |
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B0 and B1+) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B0 and B1+ inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B0 and B1+ inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.
Type: | Article |
---|---|
Title: | Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review |
DOI: | 10.1002/nbm.5294 |
Publisher version: | http://dx.doi.org/10.1002/nbm.5294 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | APT MRI, B0 inhomogeneity, B1+ inhomogeneity, CEST MRI, motion correction, prospective correction, retrospective correction, shim correction |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/10200125 |
Archive Staff Only
View Item |