Orr, Jessica C;
Laali, Asma;
Durrenberger, Pascal F;
Lazarus, Kyren A;
El Mdawar, Marie-Belle;
Janes, Sam M;
Hynds, Robert E;
(2024)
A lentiviral toolkit to monitor airway epithelial cell differentiation using bioluminescence.
American Journal of Physiology-Lung Cellular and Molecular Physiology
, 327
(4)
L587-L599.
10.1152/ajplung.00047.2024.
Preview |
Text
Hynds_orr-et-al-2024-a-lentiviral-toolkit-to-monitor-airway-epithelial-cell-differentiation-using-bioluminescence.pdf Download (3MB) | Preview |
Abstract
Basal cells are adult stem cells in the airway epithelium and regenerate differentiated cell populations, including the mucosecretory and ciliated cells that enact mucociliary clearance. Human basal cells can proliferate and produce differentiated epithelium in vitro. However, studies of airway epithelial differentiation mostly rely on immunohistochemical or immunofluorescence-based staining approaches, meaning that a dynamic approach is lacking, and quantitative data are limited. Here, we use a lentiviral reporter gene approach to transduce primary human basal cells with bioluminescence reporter constructs to monitor airway epithelial differentiation longitudinally. We generated three constructs driven by promoter sequences from the TP63, MUC5AC, and FOXJ1 genes to quantitatively assess basal cell, mucosecretory cell, and ciliated cell abundance, respectively. We validated these constructs by tracking differentiation of basal cells in air-liquid interface and organoid (“bronchosphere”) cultures. Transduced cells also responded appropriately to stimulation with interleukin 13 (IL-13; to increase mucosecretory differentiation and mucus production) and IL-6 (to increase ciliated cell differentiation). These constructs represent a new tool for monitoring airway epithelial cell differentiation in primary epithelial and/or induced pluripotent stem cell (iPSC)-derived cell cultures. NEW & NOTEWORTHY: Orr et al. generated and validated new lentiviral vectors to monitor the differentiation of airway basal cells, goblet cells, or multiciliated cells using bioluminescence.
Archive Staff Only
View Item |