Pascale, Enzo;
Bocchieri, Andrea;
Eccleston, Paul;
Mugnai, Lorenzo V;
Savini, Giorgio;
Syty, Angele;
Thurairethinam, Vinooja;
(2024)
The atmospheric remote-sensing infrared exoplanet large-survey (Ariel) sensitivity and performance.
In: Coyle, Laura E and Matsuura, Shuji and Perrin, Marshall D, (eds.)
Proceedings of SPIE: Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave.
(pp. 130921F).
SPIE: Bellingham, WA, USA.
Preview |
Text
130921F.pdf - Published Version Download (837kB) | Preview |
Abstract
The Ariel space mission will characterize spectroscopically the atmospheres of a large and diverse sample of hundreds of exoplanets. Targets will be chosen to cover a wide range of masses, densities, equilibrium temperatures, and host stellar types to study the physical mechanisms behind the observed diversity in the population of known exoplanets. With a 1-m class telescope, Ariel will detect the atmospheric signatures from the small, < 100 ppm, modulation induced by exoplanets on the bright host-star signals, using transit, eclipse, and phase curve spectroscopy. Three photometric and three spectroscopic channels, with Nyquist sampled focal planes, simultaneously cover the 0.5-7.8 micron region of the electromagnetic spectrum, to maximize observing efficiency and to reduce systematics of astrophysical and instrumental origin. This contribution reviews the predicted Ariel performance as well as the design solutions implemented that will allow Ariel to reach the required sensitivity and control of systematics.
Type: | Proceedings paper |
---|---|
Title: | The atmospheric remote-sensing infrared exoplanet large-survey (Ariel) sensitivity and performance |
Event: | SPIE Astronomical Telescopes + Instrumentation 2024 |
Dates: | 16 Jun 2024 - 22 Jun 2024 |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1117/12.3017657 |
Publisher version: | http://dx.doi.org/10.1117/12.3017657 |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Astronomy, Instrumentation, Exoplanets, Spectroscopy, Space, Transit, Telescope, Atmosphere |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery.ucl.ac.uk/id/eprint/10197946 |




Archive Staff Only
![]() |
View Item |