Gu, S;
Yang, L;
Du, Y;
Chen, G;
Walter, F;
Wang, J;
Knoll, A;
(2024)
A Review of Safe Reinforcement Learning: Methods, Theories and Applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence
10.1109/TPAMI.2024.3457538.
Preview |
Text
A_Review_of_Safe_Reinforcement_Learning_Methods_Theories_and_Applications.pdf - Accepted Version Download (15MB) | Preview |
Abstract
Reinforcement Learning (RL) has achieved tremendous success in many complex decision-making tasks. However, safety concerns are raised during deploying RL in real-world applications, leading to a growing demand for safe RL algorithms, such as in autonomous driving and robotics scenarios. While safe control has a long history, the study of safe RL algorithms is still in the early stages. To establish a good foundation for future safe RL research, in this paper, we provide a review of safe RL from the perspectives of methods, theories, and applications. Firstly, we review the progress of safe RL from five dimensions and come up with five crucial problems for safe RL being deployed in real-world applications, coined as '2H3W'. Secondly, we analyze the algorithm and theory progress from the perspectives of answering the '2H3W' problems. Particularly, the sample complexity of safe RL algorithms is reviewed and discussed, followed by an introduction to the applications and benchmarks of safe RL algorithms. Finally, we open the discussion of the challenging problems in safe RL, hoping to inspire future research on this thread. To advance the study of safe RL algorithms, we release an open-sourced repository containing major safe RL algorithms at the link.
Type: | Article |
---|---|
Title: | A Review of Safe Reinforcement Learning: Methods, Theories and Applications |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1109/TPAMI.2024.3457538 |
Publisher version: | https://doi.org/10.1109/TPAMI.2024.3457538 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Safety, Benchmark testing, Complexity theory, Robots, Reviews, Optimization, Costs |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10197913 |
Archive Staff Only
View Item |