Yu, Changmin;
Burgess, Neil;
Sahani, Maneesh;
Gershman, Samuel J;
(2023)
Successor-Predecessor Intrinsic Exploration.
In: Oh, A and Neumann, T and Globerson, A and Saenko, K and Hardt, M and Levine, S, (eds.)
Advances in Neural Information Processing Systems 36 (NeurIPS 2023).
(pp. pp. 1-18).
NeurIPS
Preview |
Text
NeurIPS-2023-successor-predecessor-intrinsic-exploration-Paper-Conference.pdf - Published Version Download (4MB) | Preview |
Abstract
Exploration is essential in reinforcement learning, particularly in environments where external rewards are sparse. Here we focus on exploration with intrinsic rewards, where the agent transiently augments the external rewards with self-generated intrinsic rewards. Although the study of intrinsic rewards has a long history, existing methods focus on composing the intrinsic reward based on measures of future prospects of states, ignoring the information contained in the retrospective structure of transition sequences. Here we argue that the agent can utilise retrospective information to generate explorative behaviour with structure-awareness, facilitating efficient exploration based on global instead of local information. We propose Successor-Predecessor Intrinsic Exploration (SPIE), an exploration algorithm based on a novel intrinsic reward combining prospective and retrospective information. We show that SPIE yields more efficient and ethologically plausible exploratory behaviour in environments with sparse rewards and bottleneck states than competing methods. We also implement SPIE in deep reinforcement learning agents, and show that the resulting agent achieves stronger empirical performance than existing methods on sparse-reward Atari games.
Type: | Proceedings paper |
---|---|
Title: | Successor-Predecessor Intrinsic Exploration |
Event: | 37th Conference on Neural Information Processing Systems (NeurIPS) |
Location: | New Orleans, LA, USA |
Dates: | 10th-16th December 2023 |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | https://proceedings.neurips.cc/paper_files/paper/2... |
Language: | English |
Additional information: | © The Author 2024. Original content in this paper is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neurosci Unit |
URI: | https://discovery.ucl.ac.uk/id/eprint/10196215 |
Archive Staff Only
View Item |