UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Structural basis for the roles of single and double Holliday Junctions formed from Human telomeric Nucleic Acids (HJTNA)

Alanazi, Abeer; (2024) Structural basis for the roles of single and double Holliday Junctions formed from Human telomeric Nucleic Acids (HJTNA). Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Abeer_PhD_2024_FINAL-clean.pdf]
Preview
Text
Abeer_PhD_2024_FINAL-clean.pdf - Accepted Version

Download (22MB) | Preview

Abstract

BACKGROUND: Telomeres, nucleoprotein complexes at chromosome ends, are crucial for genomic stability. Cancer cells maintain telomere length via telomerase or alternative lengthening of telomeres (ALT). The ALT pathway, observed in 15% of cancers, involves recombination and employs Holliday junction intermediates. These 4-way DNA motifs are dynamic structures influenced by cations, particularly Magnesium (Mg²⁺), leading to conformational changes. AIMS: This study aims to explore Holliday junction stability and mobility in the context of ALT, focusing on the impact of G-rich sequences. Leveraging single-molecule Förster resonance energy transfer (smFRET) and X-ray crystallography, we aim to understand the influence of varying Mg²⁺ ion concentrations on the Holliday junctions. Additionally, we investigate protein-Holliday junction complexes and assess the role of Mg²⁺ ions in protein-DNA binding affinity. METHODOLOGY: smFRET and X-ray crystallography have been employed to study Holliday junction structures. Microscale thermophoresis (MST) quantified protein-DNA binding affinity at different Mg²⁺ ion concentrations. T4 endonuclease VII, T7 endonuclease I, and the WRWYRGGRYWRW peptide were tested for their affinity under varying Mg²⁺ conditions. RESULTS AND CONCLUSIONS: The results highlight the direct influence of Mg²⁺ ions on Holliday junction stability. Protein-DNA binding affinity was observed through MST, with T4 endonuclease VII, T7 endonuclease I, and the WRWYRGGRYWRW peptide exhibiting persistent affinity at lower Mg²⁺ concentrations. However, affinity diminished at higher concentrations. smFRET analysis provided insights into branch migration rates across diverse Mg²⁺ ion conditions, suggesting a potential strategy for targeting ALT-positive cancer cells by stabilizing Holliday junction conformation. This study offers valuable insights into the ALT mechanism.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Structural basis for the roles of single and double Holliday Junctions formed from Human telomeric Nucleic Acids (HJTNA)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2024. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy
URI: https://discovery.ucl.ac.uk/id/eprint/10190180
Downloads since deposit
35Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item