UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Gross tumour volume radiomics for prognostication of recurrence & death following radical radiotherapy for NSCLC

Hindocha, Sumeet; Charlton, Thomas G; Linton-Reid, Kristofer; Hunter, Benjamin; Chan, Charleen; Ahmed, Merina; Greenlay, Emily J; ... Aboagye, Eric O; + view all (2022) Gross tumour volume radiomics for prognostication of recurrence & death following radical radiotherapy for NSCLC. npj: Precision Oncology , 6 , Article 77. 10.1038/s41698-022-00322-3. Green open access

[thumbnail of Gross tumour volume radiomics for prognostication of recurrence & death following radical radiotherapy for NSCLC.pdf]
Preview
Text
Gross tumour volume radiomics for prognostication of recurrence & death following radical radiotherapy for NSCLC.pdf - Other

Download (2MB) | Preview

Abstract

Recurrence occurs in up to 36% of patients treated with curative-intent radiotherapy for NSCLC. Identifying patients at higher risk of recurrence for more intensive surveillance may facilitate the earlier introduction of the next line of treatment. We aimed to use radiotherapy planning CT scans to develop radiomic classification models that predict overall survival (OS), recurrence-free survival (RFS) and recurrence two years post-treatment for risk-stratification. A retrospective multi-centre study of >900 patients receiving curative-intent radiotherapy for stage I-III NSCLC was undertaken. Models using radiomic and/or clinical features were developed, compared with 10-fold cross-validation and an external test set, and benchmarked against TNM-stage. Respective validation and test set AUCs (with 95% confidence intervals) for the radiomic-only models were: (1) OS: 0.712 (0.592–0.832) and 0.685 (0.585–0.784), (2) RFS: 0.825 (0.733–0.916) and 0.750 (0.665–0.835), (3) Recurrence: 0.678 (0.554–0.801) and 0.673 (0.577–0.77). For the combined models: (1) OS: 0.702 (0.583–0.822) and 0.683 (0.586–0.78), (2) RFS: 0.805 (0.707–0.903) and 0·755 (0.672–0.838), (3) Recurrence: 0·637 (0.51–0.·765) and 0·738 (0.649–0.826). Kaplan-Meier analyses demonstrate OS and RFS difference of >300 and >400 days respectively between low and high-risk groups. We have developed validated and externally tested radiomic-based prediction models. Such models could be integrated into the routine radiotherapy workflow, thus informing a personalised surveillance strategy at the point of treatment. Our work lays the foundations for future prospective clinical trials for quantitative personalised risk-stratification for surveillance following curative-intent radiotherapy for NSCLC.

Type: Article
Title: Gross tumour volume radiomics for prognostication of recurrence & death following radical radiotherapy for NSCLC
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41698-022-00322-3
Publisher version: http://dx.doi.org/10.1038/s41698-022-00322-3
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10189500
Downloads since deposit
Loading...
7Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item