UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Effect of very long-term storage and multiple freeze and thaw cycles on 11-dehydro-thromboxane-B2 and 8-iso-prostaglandin F2α, levels in human urine samples by validated enzyme immunoassays

Petrucci, Giovanna; Hatem, Duaa; Langley, Ruth; Cleary, Siobhan; Gentry-Maharaj, Aleksandra; Pitocco, Dario; Rizzi, Alessandro; ... Rocca, Bianca; + view all (2024) Effect of very long-term storage and multiple freeze and thaw cycles on 11-dehydro-thromboxane-B2 and 8-iso-prostaglandin F2α, levels in human urine samples by validated enzyme immunoassays. Scientific Reports , 14 (1) , Article 5546. 10.1038/s41598-024-55720-3. Green open access

[thumbnail of s41598-024-55720-3.pdf]
Preview
Text
s41598-024-55720-3.pdf - Published Version

Download (3MB) | Preview

Abstract

Biological samples are often frozen and stored for years and/or thawed multiple times, thus assessing their stability on long-term storage and repeated freeze-thaw cycles is crucial. The study aims were to assess:-the long-term stability of two major enzymatic and non-enzymatic metabolites of arachidonic acid, i.e. urinary 11-dehydro-thromboxane-(Tx) B2, 8-iso-prostaglandin (PG)F2α, and creatinine in frozen urine samples;-the effect of multiple freeze-thaw cycles. Seven-hundred and three urine samples measured in previously-published studies, stored at -40 °C, and measured for a second time for 11-dehydro-TxB2 (n = 677) and/or 8-iso-PGF2α (n = 114) and/or creatinine (n = 610) were stable over 10 years and the 2 measurements were highly correlated (all rho = 0.99, P < 0.0001). Urine samples underwent 10 sequential freeze-thaw cycles, with and without the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (10 mM); urinary 11-dehydro-TxB2 and creatinine were stable across all cycles (11-dehydro-TxB2: 100.4 ± 21%; creatinine: 101 ± 7% of baseline at cycle ten; n = 17), while 8-iso-PGF2α significantly increased by cycle 6 (151 ± 22% of baseline at cycle ten, n = 17, P < 0.05) together with hydrogen peroxide only in the absence of antioxidant. Arachidonic acid metabolites and creatinine appear stable in human urines stored at -40 °C over 10 years. Multiple freeze-thaw cycles increase urinary 8-iso-PGF2α in urine samples without antioxidants. These data are relevant for studies using urine samples stored over long-term and/or undergoing multiple freezing-thawing.

Type: Article
Title: Effect of very long-term storage and multiple freeze and thaw cycles on 11-dehydro-thromboxane-B2 and 8-iso-prostaglandin F2α, levels in human urine samples by validated enzyme immunoassays
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41598-024-55720-3
Publisher version: http://dx.doi.org/10.1038/s41598-024-55720-3
Language: English
Additional information: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Keywords: Biomarkers, Medical research
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology > MRC Clinical Trials Unit at UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10188893
Downloads since deposit
4Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item