UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The hp-FEM applied to the Helmholtz equation with PML truncation does not suffer from the pollution effect

Galkowski, J; Lafontaine, D; Spence, E A; Wunsch, J; (2024) The hp-FEM applied to the Helmholtz equation with PML truncation does not suffer from the pollution effect. Communications in Mathematical Sciences , 22 (7) pp. 1761-1816. 10.4310/CMS.240918021620. Green open access

[thumbnail of GLSW1.pdf]
Preview
Text
GLSW1.pdf - Accepted Version

Download (922kB) | Preview

Abstract

We consider approximation of the variable-coefficient Helmholtz equation in the exterior of a Dirichlet obstacle using perfectly-matched-layer (PML) truncation; it is well known that this approximation is exponentially accurate in the PML width and the scaling angle, and the approximation was recently proved to be exponentially accurate in the wavenumber k in [28]. We show that the hp-FEM applied to this problem does not suffer from the pollution effect, in that there exist C1, C2 > 0 such that if hk/p ≤ C1 and p ≥ C2 log k then the Galerkin solutions are quasioptimal (with constant independent of k), under the following two conditions (i) the solution operator of the original Helmholtz problem is polynomially bounded in k (which occurs for “most” k by [41]), and (ii) either there is no obstacle and the coefficients are smooth or the obstacle is analytic and the coefficients are analytic in a neighbourhood of the obstacle and smooth elsewhere. This hp-FEM result is obtained via a decomposition of the PML solution into “high-” and “low-frequency” components, analogous to the decomposition for the original Helmholtz solution recently proved in [29]. The decomposition is obtained using tools from semiclassical analysis (i.e., the PDE techniques specifically designed for studying Helmholtz problems with large k).

Type: Article
Title: The hp-FEM applied to the Helmholtz equation with PML truncation does not suffer from the pollution effect
Open access status: An open access version is available from UCL Discovery
DOI: 10.4310/CMS.240918021620
Publisher version: https://dx.doi.org/10.4310/CMS.240918021620
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Helmholtz equation, high frequency, perfectly-matched layer, pollution effect, finite element method, error estimate, semiclassical analysis
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Mathematics
URI: https://discovery.ucl.ac.uk/id/eprint/10185834
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item