UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Etiology of White Matter Hyperintensities in Autosomal Dominant and Sporadic Alzheimer Disease

Shirzadi, Z; Schultz, SA; Yau, WYW; Joseph-Mathurin, N; Fitzpatrick, CD; Levin, R; Kantarci, K; ... Chhatwal, JP; + view all (2023) Etiology of White Matter Hyperintensities in Autosomal Dominant and Sporadic Alzheimer Disease. JAMA Neurology , 80 (12) pp. 1353-1363. 10.1001/jamaneurol.2023.3618. Green open access

[thumbnail of Fox_Etiology of White Matter Hyperintensities in Autosomal Dominant and Sporadic Alzheimer Disease_AAM.pdf]
Preview
Text
Fox_Etiology of White Matter Hyperintensities in Autosomal Dominant and Sporadic Alzheimer Disease_AAM.pdf

Download (4MB) | Preview

Abstract

IMPORTANCE: Increased white matter hyperintensity (WMH) volume is a common magnetic resonance imaging (MRI) finding in both autosomal dominant Alzheimer disease (ADAD) and late-onset Alzheimer disease (LOAD), but it remains unclear whether increased WMH along the AD continuum is reflective of AD-intrinsic processes or secondary to elevated systemic vascular risk factors. OBJECTIVE: To estimate the associations of neurodegeneration and parenchymal and vessel amyloidosis with WMH accumulation and investigate whether systemic vascular risk is associated with WMH beyond these AD-intrinsic processes. DESIGN, SETTING, AND PARTICIPANTS: This cohort study used data from 3 longitudinal cohort studies conducted in tertiary and community-based medical centers—the Dominantly Inherited Alzheimer Network (DIAN; February 2010 to March 2020), the Alzheimer’s Disease Neuroimaging Initiative (ADNI; July 2007 to September 2021), and the Harvard Aging Brain Study (HABS; September 2010 to December 2019). MAIN OUTCOME MEASURES: The main outcomes were the independent associations of neurodegeneration (decreases in gray matter volume), parenchymal amyloidosis (assessed by amyloid positron emission tomography), and vessel amyloidosis (evidenced by cerebral microbleeds [CMBs]) with cross-sectional and longitudinal WMH. RESULTS: Data from 3960 MRI sessions among 1141 participants were included: 252 pathogenic variant carriers from DIAN (mean [SD] age, 38.4 [11.2] years; 137 [54%] female), 571 older adults from ADNI (mean [SD] age, 72.8 [7.3] years; 274 [48%] female), and 318 older adults from HABS (mean [SD] age, 72.4 [7.6] years; 194 [61%] female). Longitudinal increases in WMH volume were greater in individuals with CMBs compared with those without (DIAN: t = 3.2 [P = .001]; ADNI: t = 2.7 [P = .008]), associated with longitudinal decreases in gray matter volume (DIAN: t = −3.1 [P = .002]; ADNI: t = −5.6 [P < .001]; HABS: t = −2.2 [P = .03]), greater in older individuals (DIAN: t = 6.8 [P < .001]; ADNI: t = 9.1 [P < .001]; HABS: t = 5.4 [P < .001]), and not associated with systemic vascular risk (DIAN: t = 0.7 [P = .40]; ADNI: t = 0.6 [P = .50]; HABS: t = 1.8 [P = .06]) in individuals with ADAD and LOAD after accounting for age, gray matter volume, CMB presence, and amyloid burden. In older adults without CMBs at baseline, greater WMH volume was associated with CMB development during longitudinal follow-up (Cox proportional hazards regression model hazard ratio, 2.63; 95% CI, 1.72-4.03; P < .001). CONCLUSIONS AND RELEVANCE: The findings suggest that increased WMH volume in AD is associated with neurodegeneration and parenchymal and vessel amyloidosis but not with elevated systemic vascular risk. Additionally, increased WMH volume may represent an early sign of vessel amyloidosis preceding the emergence of CMBs.

Type: Article
Title: Etiology of White Matter Hyperintensities in Autosomal Dominant and Sporadic Alzheimer Disease
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1001/jamaneurol.2023.3618
Publisher version: http://dx.doi.org/10.1001/jamaneurol.2023.3618
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
URI: https://discovery.ucl.ac.uk/id/eprint/10185441
Downloads since deposit
115Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item