UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training

Ravi, Daniele; Alzheimer’s Disease Neuroimaging, Initiative; Barkhof, Frederik; Alexander, Daniel C; Puglisi, Lemuel; Parker, Geoffrey JM; Eshaghi, Arman; (2023) An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training. Medical Image Analysis , 91 , Article 103033. 10.1016/j.media.2023.103033. Green open access

[thumbnail of Barkhof_An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training_VoR.pdf]
Preview
Text
Barkhof_An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training_VoR.pdf

Download (6MB) | Preview

Abstract

Large medical imaging data sets are becoming increasingly available. A common challenge in these data sets is to ensure that each sample meets minimum quality requirements devoid of significant artefacts. Despite a wide range of existing automatic methods having been developed to identify imperfections and artefacts in medical imaging, they mostly rely on data-hungry methods. In particular, the scarcity of artefact-containing scans available for training has been a major obstacle in the development and implementation of machine learning in clinical research. To tackle this problem, we propose a novel framework having four main components: (1) a set of artefact generators inspired by magnetic resonance physics to corrupt brain MRI scans and augment a training dataset, (2) a set of abstract and engineered features to represent images compactly, (3) a feature selection process that depends on the class of artefact to improve classification performance, and (4) a set of Support Vector Machine (SVM) classifiers trained to identify artefacts. Our novel contributions are threefold: first, we use the novel physics-based artefact generators to generate synthetic brain MRI scans with controlled artefacts as a data augmentation technique. This will avoid the labour-intensive collection and labelling process of scans with rare artefacts. Second, we propose a large pool of abstract and engineered image features developed to identify 9 different artefacts for structural MRI. Finally, we use an artefact-based feature selection block that, for each class of artefacts, finds the set of features that provide the best classification performance. We performed validation experiments on a large data set of scans with artificially-generated artefacts, and in a multiple sclerosis clinical trial where real artefacts were identified by experts, showing that the proposed pipeline outperforms traditional methods. In particular, our data augmentation increases performance by up to 12.5 percentage points on the accuracy, F1, F2, precision and recall. At the same time, the computation cost of our pipeline remains low - less than a second to process a single scan - with the potential for real-time deployment. Our artefact simulators obtained using adversarial learning enable the training of a quality control system for brain MRI that otherwise would have required a much larger number of scans in both supervised and unsupervised settings. We believe that systems for quality control will enable a wide range of high-throughput clinical applications based on the use of automatic image-processing pipelines.

Type: Article
Title: An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training
Location: Netherlands
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.media.2023.103033
Publisher version: https://doi.org/10.1016/j.media.2023.103033
Language: English
Additional information: © 2023 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords: Adversarial training, Artefacts generation, Brain, MRI, Quality control, Real-time processing, Synthetic-images
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10182289
Downloads since deposit
13Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item