Coomans, Emma M;
De Koning, Lotte A;
Rikken, Roos M;
Verfaillie, Sander C;
Visser, Denise;
Braber, Anouk den;
Tomassen, Jori;
... Van de Giessen, Elsmarieke; + view all
(2023)
Performance of a [18F]Flortaucipir PET Visual Read
Method Across the Alzheimer Disease Continuum and in Dementia With Lewy Bodies.
Neurology
, 101
(19)
e1850-e1862.
10.1212/WNL.0000000000207794.
Preview |
Text
e1850.full.pdf - Published Version Download (963kB) | Preview |
Abstract
Background and Objectives: Recently, the US Food and Drug Administration approved the tau-binding radiotracer [18F]flortaucipir and an accompanying visual read method to support the diagnostic process in cognitively impaired patients assessed for Alzheimer disease (AD). Studies evaluating this visual read method are limited. In this study, we evaluated the performance of the visual read method in participants along the AD continuum and dementia with Lewy bodies (DLB) by determining its reliability, accordance with semiquantitative analyses, and associations with clinically relevant variables. // Methods: We included participants who underwent tau-PET at Amsterdam University Medical Center. A subset underwent follow-up tau-PET. Two trained nuclear medicine physicians visually assessed all scans. Inter-reader agreement was calculated using Cohen κ. To examine the concordance of visual read tau positivity with semiquantification, we defined standardized uptake value ratio (SUVr) positivity using different threshold approaches. To evaluate the prognostic value of tau-PET visual read, we performed linear mixed models with longitudinal Mini-Mental State Examination (MMSE). // Results: We included 263 participants (mean age 68.5 years, 45.6% female), including 147 cognitively unimpaired (CU) participants, 97 amyloid-positive participants with mild cognitive impairment or AD dementia (AD), and 19 participants with DLB. The visual read inter-reader agreement was excellent (κ = 0.95, CI 0.91–0.99). None of the amyloid-negative CU participants (0/92 [0%]) and 1 amyloid-negative participant with DLB (1/12 [8.3%]) were tau-positive. Among amyloid-positive participants, 13 CU participants (13/52 [25.0%]), 85 with AD (85/97 [87.6%]), and 3 with DLB (3/7 [42.9%]) were tau-positive. Two-year follow-up visual read status was identical to baseline. Tau-PET visual read corresponded strongly to SUVr status, with up to 90.4% concordance. Visual read tau positivity was associated with a decline on the MMSE in CU participants (β = −0.52, CI −0.74 to −0.30, p < 0.001) and participants with AD (β = −0.30, CI −0.58 to −0.02, p = 0.04). // Discussion: The excellent inter-reader agreement, strong correspondence with SUVr, and longitudinal stability indicate that the visual read method is reliable and robust, supporting clinical application. Furthermore, visual read tau positivity was associated with prospective cognitive decline, highlighting its additional prognostic potential. Future studies in unselected cohorts are needed for a better generalizability to the clinical population. // Classification of Evidence: This study provides Class II evidence that [18F]flortaucipir visual read accurately distinguishes patients with low tau-tracer binding from those with high tau-tracer binding and is associated with amyloid positivity and cognitive decline. // Glossary: Aβ=β-amyloid; AD=Alzheimer disease; CU=cognitively unimpaired; DLB=dementia with Lewy bodies; US FDA=US Food and Drug Administration; GMM=Gaussian mixture model; LMM=linear mixed model; MCI=mild cognitive impairment; MMSE=Mini-Mental State Examination; OR=odds ratio; ROI=region of interest; SCD=subjective cognitive decline; SUVr=standardized uptake value ratio.
Type: | Article |
---|---|
Title: | Performance of a [18F]Flortaucipir PET Visual Read Method Across the Alzheimer Disease Continuum and in Dementia With Lewy Bodies |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1212/WNL.0000000000207794 |
Publisher version: | https://n.neurology.org/content/101/19/e1850 |
Language: | English |
Additional information: | Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation |
URI: | https://discovery.ucl.ac.uk/id/eprint/10181006 |
Archive Staff Only
View Item |