Tan, Naiwen;
Sabalic-Schoener, Maja;
Nguyen, Linh;
D’Aiuto, Francesco;
(2023)
β-Tricalcium Phosphate-Loaded Chitosan-Based Thermosensitive Hydrogel for Periodontal Regeneration.
Polymers
, 15
(20)
, Article 4146. 10.3390/polym15204146.
Preview |
Text
polymers-15-04146.pdf - Published Version Download (3MB) | Preview |
Abstract
The current treatment for periodontitis is aimed at resolving gingival inflammation, whilst complete periodontal tissue regeneration is not predictable, and it represents a therapeutic challenge. Injectable biomaterials hold tremendous potential in dental tissue regeneration. This study aimed to investigate the ability of an injectable thermosensitive β-tricalcium phosphate (β-TCP) and chitosan-based hydrogel to carry cells and promote periodontal tissue regeneration. In this study, different concentrations of β-TCP-loaded chitosan hydrogels were prepared (0%, 2%, 4%, or 6% β-TCP, 10% β-glycerol phosphate, and 1.5% chitosan). The characteristics of the hydrogels were tested using rheology, a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), degradation, and biological analyses. The new biomaterial showed a sol–gel transformation ability at body temperature and exhibited excellent chemical and physical characteristics, whilst the existence of β-TCP enhanced the structure and the properties of the hydrogels. The SEM confirmed the three-dimensional networks of the hydrogels, and the typical rheological properties of strong gel were observed. The EDX and XRD validated the successful incorporation of β-TCP, and similar patterns between different groups were found in terms of the FTIR spectra. The stable structure of the hydrogels under 100 °C was confirmed via DSC. Biological tests such as Alamar Blue assay and Live/Dead staining confirmed the remarkable biocompatibility of the hydrogels with pre-osteoblast MC3T3-E1 and human gingival fibroblast (HGF) cells for 14 days, and the results were validated with confocal imaging. This preliminary study shows great promise for the application of the β-TCP-loaded thermosensitive chitosan hydrogels as a scaffold in periodontal bone and soft tissue repair.
Type: | Article |
---|---|
Title: | β-Tricalcium Phosphate-Loaded Chitosan-Based Thermosensitive Hydrogel for Periodontal Regeneration |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3390/polym15204146 |
Publisher version: | https://doi.org/10.3390/polym15204146 |
Language: | English |
Additional information: | Copyright © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/). |
Keywords: | Biocompatible materials; injectable hydrogel; chitosan; periodontitis; regenerative medicine tissue engineering; dental tissue repair |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute > Biomaterials and Tissue Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/10179755 |
Archive Staff Only
View Item |