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Abstract: The current treatment for periodontitis is aimed at resolving gingival inflammation, whilst
complete periodontal tissue regeneration is not predictable, and it represents a therapeutic challenge.
Injectable biomaterials hold tremendous potential in dental tissue regeneration. This study aimed to
investigate the ability of an injectable thermosensitive β-tricalcium phosphate (β-TCP) and chitosan-
based hydrogel to carry cells and promote periodontal tissue regeneration. In this study, different
concentrations of β-TCP-loaded chitosan hydrogels were prepared (0%, 2%, 4%, or 6% β-TCP, 10%
β-glycerol phosphate, and 1.5% chitosan). The characteristics of the hydrogels were tested using
rheology, a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier-transform infrared
spectroscopy (FTIR), differential scanning calorimetry (DSC), degradation, and biological analyses.
The new biomaterial showed a sol–gel transformation ability at body temperature and exhibited
excellent chemical and physical characteristics, whilst the existence of β-TCP enhanced the structure
and the properties of the hydrogels. The SEM confirmed the three-dimensional networks of the
hydrogels, and the typical rheological properties of strong gel were observed. The EDX and XRD
validated the successful incorporation of β-TCP, and similar patterns between different groups were
found in terms of the FTIR spectra. The stable structure of the hydrogels under 100 ◦C was confirmed
via DSC. Biological tests such as Alamar Blue assay and Live/Dead staining confirmed the remarkable
biocompatibility of the hydrogels with pre-osteoblast MC3T3-E1 and human gingival fibroblast (HGF)
cells for 14 days, and the results were validated with confocal imaging. This preliminary study shows
great promise for the application of the β-TCP-loaded thermosensitive chitosan hydrogels as a
scaffold in periodontal bone and soft tissue repair.

Keywords: biocompatible materials; injectable hydrogel; chitosan; periodontitis; regenerative medicine
tissue engineering; dental tissue repair

1. Introduction

Periodontitis is an inflammatory disease affecting the gingival tissues supporting the
tooth, coupled with progressive tissue attachment and bone loss [1]. The classification
of periodontitis was internationally accepted in 1999 [2], and periodontitis was further
subdivided into four stages (defined by the severity, complexity, extent, and distribution
of the disease) and three grades (defined by the rapid progression, anticipated treatment
response, and effects on systemic health) at 2017 [3]. Periodontal regenerative therapy is
aimed at recovering the lost periodontal soft and hard tissues. The ideal outcome of this
treatment is to recreate the structure and the function of periodontal tissues, including new
cement formation on the root surface, and new alveolar bone and periodontal ligament
fibres connecting between cement and alveolar bone [4,5]. Successful regenerative therapy
requires the appropriate coordination of three elements: the implanted cells that can create
new tissue, a biomaterial acting as a scaffold or matrix to hold the cells, and biological
signalling molecules that can direct the cells to form the desired tissue [6,7].
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The current regenerative treatments are based on the concept of guided tissue re-
generation (GTR) and bone grafting [8], which have also been combined. Although both
regenerative techniques are widely applied in everyday clinical practice and have already
shown some positive clinical outcomes, there are still challenges to achieving predictable
regenerative outcomes due to the complex structure of the periodontium as well as the
treated defect, and due to clinical case selection and technical challenges.

Hydrogels show great promise as a scaffold in tissue engineering because of their
excellent physical, chemical, and biological properties. Due to their good biocompatibility
and biodegradability, natural scaffolds have advantages for living tissue and cells [9]. Un-
der certain stimulations, including physical, chemical, or biological stimuli, hydrogels can
undergo sol–gel or gel–sol transitions. As applicable carriers, hydrogels can provide vari-
ous functions by delivering different bioactive molecules. Nanoparticles [10], drugs [11],
and cells [12] can be delivered to the targeted site to eliminate inflammation, enhance
bone growth, or prevent the progress of the disease on-site. Specially designed hydrogels
including postbiotic gel and ozone gel have already shown benefits to patients with peri-
odontal diseases in clinical studies [13,14]. Chitosan-based hydrogels, a representative of
natural hydrogels, elicit minimal immune responses and have antimicrobial ability as well
as biocompatibility and biodegradability [15,16]. Injectable hydrogels represent a novel
and non-invasive biomaterial which could be used to fill irregularly shaped defects [17].
When applied as a scaffold to reconstruct bone and soft tissue, chitosan-based hydrogel,
however, still has some limitations. Indeed, they lack strong mechanical properties, and
hence they need to be combined with other functional materials, including nanoparticles,
polymers, and ceramics, to promote osteogenic differentiation and tissue regeneration [18].

As an inorganic ceramic material, β-tricalcium phosphate (β-TCP) is remarkable for
its biocompatibility, high bioactivity, osteoconductivity, and thermodynamic stability. It
can also increase the adhesion, proliferation, and differentiation ability of osteoblasts,
which can simulate the mineralogical and structural bone composition [19]. It can directly
bond to natural bone, and thanks to its biodegradability, it can be gradually absorbed and
replaced by the new tissue. B-TCP has already been approved and widely used in daily
clinical practice [20]. The combination of β-TCP with organic materials could improve their
physicochemical and biological characteristics.

Regenerative periodontal surgeries are routinely performed using a combination
of biomaterials in the form of particles, membranes, and gels, and their application is
technically sensitive. However, the new in situ gelling hydrogel scaffold combines a
hydrogel that adapts well to the treated defect and beta-tricalcium phosphate particles
to enhance osteogenic differentiation. The data to date suggest that it is biocompatible
and, therefore, it could be used with cells such as endogenous granulation tissue cells.
It is developed specifically with periodontal regenerative surgery in mind, aiming to
improve handling and simplify application to increase the predictability of these procedures.
Relevantly, the material could be used in patients who object to the use of porcine and
bovine materials, marking a significant step forward in making regenerative periodontal
surgery more inclusive and accessible.

This study aimed to investigate the ability of an injectable β-TCP-loaded chitosan-
based thermosensitive hydrogel to act as an effective substrate and carrier of cells in
periodontal regenerative therapy.

2. Materials and Methods
2.1. Hydrogel Preparation

Three different concentrations of β-TCP (2%, 4%, and 6%, w/v%)-loaded chitosan
hydrogels were prepared and compared to chitosan hydrogel alone (without β-TCP). Specif-
ically, 300 mg of chitosan (448869, Sigma-Aldrich (St. Louis, MO, USA), molecular weight:
50,000–190,000 Da, deacetylation: 83%) was added into 10 mL of 1% lactic acid (252476,
Sigma-Aldrich) and stirred for one hour. The well-mixed chitosan solution was kept in a
4 ◦C fridge overnight. β-Glycerophosphate (β-GP, G9422, Sigma-Aldrich) solutions were
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prepared by dissolving 2 g into 10 mL of deionized water and were kept in a 4 ◦C fridge
overnight. Different amounts of β-TCP powder (0 mg, 400 mg, 800 mg, 1200 mg) (49963,
Sigma-Aldrich) were added into the chitosan solution under magnetic stirring in an ice
bath separately, and then the β-GP solution was added into the chitosan solution drop by
drop under the same condition. At last, 1.5% chitosan (w/v%), 10% β-GP (w/v%) hydrogels
with different β-TCP concentrations (0%, 2%, 4%, 6%, w/v%) were prepared and put into
a 37 ◦C water bath to observe the sol–gel transition behaviour through the inverted test
tube technique [21,22] as shown in Figure 1. All the samples were stored at 4 ◦C for the
next experimental steps.
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Figure 1. The gelification process of β-TCP-loaded chitosan hydrogel samples; 0%, 2%, 4%, and
6% β-TCP-loaded chitosan hydrogels were observed under room temperature (a–d) and at 37 ◦C
(e–h) separately.

2.2. Morphology of the Samples Observed through Scanning Electron Microscope (SEM) and
Energy Dispersive X-ray (EDX) Analysis

The hydrogel samples were kept at 37 ◦C overnight to allow for complete gelification
for the next step of testing. These gelled hydrogels were then freeze-dried to remove water
components. After being coated with palladium (Polaron E5000 Sputter Coater, Quorum
Technologies, Laughton, UK), the morphology of the hydrogel was observed via scanning
electron microscopy (Zeiss Sigma, Oberkochen, Germany) (EHT = 10 kV, WD = 7.8 mm).
EDX analysis was also performed.

2.3. X-ray Diffraction (XRD) Analysis

The freeze-dried hydrogel samples were ground into powder and an XRD analysis of
the powder samples was performed with a Bruker D8 Advance Diffractometer (Karlsruhe,
Germany) to determine the phase composition. The scan range was set to 2θ from 10 to
100 degrees.

2.4. Spectroscopic Analysis

The Fourier-transform infrared (FTIR) spectra of the freeze-dried powder samples
were analysed using an FTIR spectrometer (ATR-FTIR, System 2000, PerkinElmer, Seer
Green, UK) at a resolution of 4 cm−1 to identify the functional groups of the β-TCP-loaded
chitosan hydrogel. The spectra were recorded from 400 to 4000 cm−1.

2.5. Thermal Analysis

Differential scanning calorimetry (DSC25, TA Instruments, New Castle, NSW, USA)
was used to analyse the heat capacity of the hydrogel samples. The weighed samples
were put into Tzero®® Pans and sealed with Tzero®® lids. Together with an empty pan set
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as a reference, the pans with samples were heated from 0 ◦C to 250 ◦C at a ramp rate of
10 ◦C/min. The data were reported using TRIOS software (version 5.1.1.46572).

2.6. Rheological Analysis

The rheological characterization of these hydrogels was tested with a rotational
rheometer (HAAKE Viscotester iQ Rheometers, Thermo Scientific, Walthman, MA, USA).
The lineal visco-elastic range of the hydrogels was tested first to determine an appropri-
ate strain value. Next, the viscoelastic moduli G′ and G′′ were evaluated as functions of
temperature, time, and frequency separately. Each group had three replicate samples.

2.7. Degradation Analysis

The degradability of the hydrogels was carried out in PBS, 10 µg/mL of lysozyme
(L1667, Sigma-Aldrich), and 100 µg/mL of lysozyme and artificial saliva (AS) (SAE0149,
Sigma-Aldrich) at 37 ◦C, respectively. One millilitre of the different hydrogels was put into
SterilinTM 7 mL Plystyrene Bijou Containers (129B, Thermo ScientificTM) separately and
left in a 37 ◦C incubator overnight for gelation, followed by adding 1 ml of the different
medium into each bottle. The medium was replaced every day in the first week and every
other day in the following three weeks. Each group had four replicates. The initial weights
were measured with a weighing scale (Avery Weigh-Tronix PA224, OHAUS®, Nänikon,
Switzerland) and the wet weights of the samples were measured on days 1, 2, 3, 7, 14, 21,
and 28. The degradation process was reflected by measuring the weight remaining, and
the weight remaining ratio (WRR) was calculated using the following formula:

WRR (%) = Wt/W0 × 100

W0 and Wt are the weights of the hydrogels at baseline and after degradation,
separately.

2.8. Biological Analyses

Cell culture. Osteoblastic cell line MC3T3-E1 (99072810, Sigma-Aldrich) and human
gingival fibroblasts (HGF, CRL-2014TM, ATCC, Manassas, VA, USA) were cultured in an
MEM-based growth medium (11095080, Gibco, Billings, MT, USA) with 10% foetal bovine
serum (F7524, Sigma-Aldrich) and 1% penicillin–streptomycin (15140122, Gibco), and a
DMEM-based growth medium (D6429, Sigma-Aldrich) with 10% foetal bovine serum and
1% penicillin–streptomycin, separately, in a humidified incubator at 37 ◦C in 5% CO2.
The MC3TC-E1 and HGF (passage 6) were ready for cell viability test until cells attained
>90% confluency.

Cell viability and proliferation studies using Alamar Blue assay. The hydrogel samples
were sterilised before being mixed with a cell suspension. Specifically, the chitosan solution
was sterilised for 60 min at 110 ◦C in an autoclave, the β-GP solution was sterilised via a
0.2 µm pore size syringe filter, and the β-TCP powder was exposed to UV light for 30 min
before being mixed with the chitosan solution.

One hundred microliters of the prepared hydrogel solution samples were mixed with
the cell suspension of both types of cells (1.5 × 105 cells/well) and added into separate
wells of 24-well tissue culture plates, and then the plates were incubated at 37 ◦C for 30 min
to form the hydrogels, followed by adding 1 mL of the complete culturing medium. The
medium was replaced every other day.

The Alamar Blue Cell Viability Reagent (DAL1025, Thermo Fisher Scientific, Waltham,
MA, USA) was used to determine the cell viability and proliferation. Specifically, 400 µL
of a 10% (v/v) reagent dissolved in a complete medium was added to each well after
the culture medium was removed. The plate was incubated for 4 h at 37 ◦C in the dark,
followed by a fluorescence intensity measurement using a Biotek FLx800 microplate reader
(Winooski, VT, USA) (excitation: 540/35 nm, emission: 600/40 nm). Each group had three
replicate samples.
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Cell viability study using Live/Dead staining. The cell viability on chitosan hydrogel
samples was further tested with a Live/DeadTM Viability/Cytotoxicity Kit (L3224, Thermo
Fisher Scientific) using HGF cells at days 1, 3, 7, and 14. Similarly, one hundred microliters
of the sterilised samples were mixed with the HGF cell suspension (1.5 × 105 cells/well)
and added into separate dishes (NuncTM Glass Bottom Dishes, 150680, Thermo Fisher
Scientific), followed by transferring the dishes into an incubator at 37 ◦C for 30 min. Two
millilitres of the complete medium was added to the plate after the gel formation was
achieved and the medium was replaced every 2 days. To perform the viability assay, 5 µL
of calcein AM (Component A) and 20 µL of ethidium homodimer-1 (Component B) were
added to 10 mL of PBS to create a staining solution. The medium was removed from the
dishes and then 2 mL of the staining solution was added to the dish, followed by incubation
for 30 min at room temperature in the dark. Finally, the images of the stained live and dead
cells were collected using a confocal microscope (Aurox, Abingdon, UK) and Visionary
software (version 2, Aurox, UK).

2.9. Statistical Analysis

The statistical analyses were conducted using a one-way ANOVA with a Tukey post-
test analysis, and the data are presented as a mean with a standard deviation. The difference
was considered significant if p < 0.01.

3. Results
3.1. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) Analysis

The SEM results of three freeze-dried hydrogel samples confirmed their porous struc-
ture, whilst the increase in the β-TCP concentration did not affect the porosity of the
hydrogel but could strengthen the fibre content (Figure 2a–d). The presence and the differ-
ences of calcium and phosphate from β-TCP in the hydrogels were confirmed based on the
EDX spectra (Figure 2a′–d′).

3.2. X-ray Diffraction (XRD) Analysis

A marked peak at 32 degrees in the hydrogel samples containing β-TCP was observed,
but this peak could not be found in the control group without β-TCP, indicating the presence
of β-TCP (Figure 3a). The remarkable peak at 2θ = 12◦ and 20◦ corresponds to chitosan,
and it has been reported previously [23].

3.3. Spectroscopic Analysis

Four hydrogel samples showed similar spectrum characteristics (Figure 3b). The peak
at 1067 cm−1 can be found in four hydrogel samples, which can be assigned to –C–O–C–
in the glycosidic linkage of chitosan [24]. The spectrum characteristics of the chitosan
hydrogels with β-TCP and without β-TCP were very similar, likely because β-TCP was
only physically mixed with the chitosan hydrogel without a chemical reaction; thus, no
new chemical bond could be characterised.

3.4. Thermal Analysis

The thermal properties of the hydrogel samples were analysed via DSC (Figure 3c).
Similar curves began at ~100 ◦C and peaked at ~115 ◦C in all the groups. This peak can
be ascribed to the loss of water and the existence of hydrated chitosan. This result was
consistent with the results reported by Thanyacharoen et al. [25], and it was described as a
glass transition temperature.
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3.5. Rheological Analysis

The linear visco-elastic range of different concentrations of the β-TCP-loaded chitosan
hydrogel showed a similar linear visco-elastic range, where the strain value was between
0.01% and 1%. The strain value at 0.1% was chosen as a parameter to perform the following
rheological test.
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The storage modulus (G′) and loss modulus (G′′) as functions of temperature for
the β-TCP-loaded chitosan hydrogels were defined (Figure 4a). The G′ and G′′ increased
rapidly at around 40–45 ◦C, indicating the temperature-induced gelification process. After
increasing for around 3000 s, the G′ and G′′ became stable as the functions of time at 37 ◦C
(Figure 4b). The chitosan hydrogels with 2% and 6% β-TCP showed a higher G′ and G′′

value compared to the control group, while the 4% β-TCP chitosan hydrogel had the lowest
G′ and G′′ values. The G′ and G′′ were represented independent from the frequency value,
and the 4% β-TCP group revealed a lower G′ and G′′ when compared with the other groups
(Figure 4c).
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3.6. Degradation Test

The degradation behaviour of the test hydrogels in four different media was evaluated
by monitoring the remaining weight of the hydrogels as a function of time (Figure 5). All
the samples showed a decrease in weight with time, demonstrating the degradability of
the hydrogels. The hydrogels retained over 80% of their weight after 4 weeks in the PBS
and AS groups and showed a higher weight loss in the lysozyme groups. Incorporation
with β-TCP did not affect the degradation ability of the chitosan hydrogels in the PBS, AS,
and higher lysozyme concentration groups (Figure 5a,b,d), but had a significantly higher
weight loss in the lower lysozyme concentration group (Figure 5c).
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3.7. In Vitro Studies

The Alamar Blue analysis results showed the good cell viability of the β-TCP-loaded
chitosan hydrogels (Figure 6). Both the MC3T3-E1 cell line and HGF cells proliferated after
culturing for 14 days. The hydrogels with β-TCP presented a higher cell viability when
culturing MC3T3-E1 cells than non-β-TCP hydrogels in the first three days, and all four
groups showed good cell proliferation at day 14. The hydrogels with different concentra-
tions of β-TCP showed similar cell viability behaviour when culturing HGF cells on day 1,
whilst the lower concentration of β-TCP-loaded hydrogels exhibited better cell viability
compared to the rest. The HGF cells proliferated on day 7 and day 14, with a significantly
higher proliferation in the lower concentration of β-TCP-loaded hydrogel groups.
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Figure 6. Alamar Blue assay on HGF (a) and MC3T3-E1 cells (b), 3D cultured in the hydrogel samples.
The control group is the hydrogel without β-TCP.

The confocal images of the HGF cells stained using the Live/Dead kit confirmed the
excellent cell viability of the β-TCP-loaded chitosan hydrogels (Figure 7). Most of the cells
were viable after culturing for 14 days, as indicated by green fluorescence. The appearance
of cells spreading in the green fluorescence showed that the cells were healthy and able
to grow.
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4. Discussion

In this study, β-TCP-loaded chitosan hydrogels were synthesised successfully, as de-
scribed before [16,26], and their thermosensitive property was confirmed. β-TCP was added
successfully into chitosan hydrogels to enhance their mechanical and biological properties.

As a natural polymer, chitosan showed potential in biomaterial and tissue engineering
(BTE) applications due to its excellent characteristics and properties [27]. Chitosan solution
is able to achieve thermal gelation by adding β-GP to the system. Chitosan is soluble
in a weak acid environment due to the amino group from the chitosan, which easily
reacts with the acid to form salt, and the neutralisation of the chitosan solution results
in the formation of a hydrated gel-like precipitate. The addition of β-GP to the chitosan
solution can inhibit the precipitation of the chitosan solution whilst increasing the pH level
to a physiological range (7.0 to 7.4). At a low temperature, the aggregation of chitosan
chains is blocked by chitosan–water interactions. The water molecules are removed by the
glycerol as the temperature increases, which promotes the association of chitosan chains
and leads to gel formation [26,28]. Apart from giving the thermo-sensitive ability to the
hydrogels, β-GP is also able to promote the differentiation of MSCs into osteoblasts [29].
Increasing the concentration of β-GP can provide a shorter gelation time, but can also cause
cytotoxicity [30]. An appropriate concentration of β-GP should be selected to balance the
physical and chemical properties and the biological properties of the hydrogels. In our
study, 10% (w/v) β-GP in the chitosan hydrogels demonstrated favourable properties and
safety for cells. The temperature-induced phase transition nature overcomes the limitations
of preformed scaffolds and broadens the clinical application prospect of the hydrogels.
At room temperature, the hydrogels keep at a liquid state and are able to be applied in
periodontal pockets and osseous defects, adapting to their configuration. After being
injected, and with the environmental temperature increasing to body temperature, the
sol–gel transition occurs, and the hydrogel can provide structure for cell proliferation or
drug release.

The weak mechanical properties of chitosan, however, limit its application in BTE.
Blending with one or more functional materials (polymers/ceramic particles) could over-
come this disadvantage and improve the properties of chitosan hydrogels [31]. Calcium
phosphates as inorganic materials can provide cell-binding sites, helping cells to adhere
to their surface and release ionic species, which can promote cell proliferation, differenti-
ation, and extracellular matrix mineralization [32]. In our study, β-TCP was added into
the chitosan hydrogel instead of hydroxyapatite because (1) β-TCP resorbs faster than
hydroxyapatite and it can be gradually resorbed by the body, whilst hydroxyapatite re-
mains in the body for a longer period [33,34], and hence, β-TCP has advantages in some
applications such as drug delivery compared to hydroxyapatite; (2) β-TCP is often used
where rapid bone regeneration is required, but hydroxyapatite is used when long-term
structural support is needed [35]. The successful β-TCP/chitosan mixture hydrogels were
confirmed with the XRD and FTIR results, and the presence of β-TCP did not inhibit the
gelation progress. Our SEM and EDX results also demonstrated that the chitosan hydrogels
with β-TCP contained thick fibres connecting the sheets, which can enhance the structure
of the hydrogels, and a similar G′ and G′′ in the hydrogels with β-TCP compared with the
control group, except for the 4% β-TCP group.

Our rheology results showed a higher G′ in the β-TCP-loaded chitosan hydrogels
compared with the control group. The G′ and G′′ of all four groups showed a rapid increase
at around 40–45 ◦C, which might be due to a short delay (1–2 min) of the gel formation
when the temperature reaches 37 ◦C. The physical crosslinks between chitosan and β-GP
give the hydrogels a high degree of elasticity, and the association between the phosphate
ions from β-TCP and the amine from chitosan might be the reason why β-TCP-loaded
chitosan hydrogels show a higher elastic modulus [36].

Chitosan hydrogels are mainly degraded into amino groups through lysozyme-
mediated hydrolysis in vivo [37,38], whilst the degraded monomeric units demonstrated
no toxicity and cycling through metabolism [37]. Our degradation test of the chitosan
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hydrogels was performed in four different media, and all the groups showed considerable
resistance to degradation within one month. Incorporation with β-TCP did not give the
chitosan hydrogels a better resistance to degradation.

The excellent biocompatibility of the hydrogels was confirmed on two types of cells
(HGF and MC3T3-E1), supporting the potential clinical application of the hydrogels
in periodontal regenerative therapy. This result is consistent with other in vitro stud-
ies [39]. Chitosan hydrogels have already been tested as scaffolds to carry drugs and
signalling molecules for the control of inflammation and promoting periodontal regenera-
tion in vivo [11,40]. With the ability to control the load and release of different therapeutic
agents, chitosan hydrogels can be regarded as carriers or scaffolds for disease therapy and
tissue repair and regeneration [17].

Besides their primary therapeutic purposes, hydrogels are also designed to approach
proactive functions, including biomonitoring [41,42], self-healing [43], and cell encapsu-
lating [12,44,45]. The oral and periodontal bacterial community holds promise as a future
real-time monitoring target of proactive hydrogels, as changes in the bacterial community
in the oral and periodontal environment are strongly associated with the occurrence and
progress of periodontal diseases. The ability to provide a multifunction of hydrogels has
great advantages to overcome the current treatment, with a singular function, and has vast
perspectives in preventing and treating periodontal diseases.

5. Conclusions

In conclusion, a novel β-TCP-loaded thermosensitive chitosan hydrogel was success-
fully synthesised. This hydrogel showed a thermosensitive ability and excellent physical,
chemical, and biological properties. A combination of inorganic components mixed with
the chitosan hydrogel can strengthen the structure and properties of the hydrogel effectively.
These findings suggest that β-TCP-loaded thermosensitive chitosan hydrogels have great
potential as a scaffold to prevent or treat periodontal diseases.
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