UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The non-specific lethal complex regulates genes and pathways genetically linked to Parkinson’s disease

Hicks, Amy R; Reynolds, Regina H; O'Callaghan, Ben; Garcia Ruiz, Sonia; Gil Martinez, Ana Luisa; Botia, Juan; Plun-Favreau, Helene; (2023) The non-specific lethal complex regulates genes and pathways genetically linked to Parkinson’s disease. Brain , Article awad246. 10.1093/brain/awad246. (In press). Green open access

[thumbnail of awad246.pdf]
Preview
Text
awad246.pdf - Published Version

Download (1MB) | Preview

Abstract

Genetic variants conferring risk for Parkinson's disease have been highlighted through genome-wide association studies, yet exploration of their specific disease mechanisms is lacking. Two Parkinson's disease candidate genes, KAT8 and KANSL1, identified through genome-wide studies and a PINK1-mitophagy screen, encode part of the histone acetylating non-specific lethal complex. This complex localises to the nucleus, where it has a role in transcriptional activation, and to mitochondria, where it has been suggested to have a role in mitochondrial transcription. In this study, we sought to identify whether the non-specific lethal complex has potential regulatory relationships with other genes associated with Parkinson's disease in human brain. Correlation in the expression of non-specific lethal genes and Parkinson's disease-associated genes was investigated in primary gene co-expression networks utilising publicly available transcriptomic data from multiple brain regions (provided by the Genotype-Tissue Expression Consortium and UK Brain Expression Consortium), whilst secondary networks were used to examine cell-type specificity. Reverse engineering of gene regulatory networks generated regulons of the complex, which were tested for heritability using stratified linkage disequilibrium score regression. Prioritised gene targets were then validated in vitro using a QuantiGene multiplex assay and publicly available chromatin immunoprecipitation-sequencing data. Significant clustering of non-specific lethal genes was revealed alongside Parkinson's disease-associated genes in frontal cortex primary co-expression modules, amongst other brain regions. Both primary and secondary co-expression modules containing these genes were enriched for mainly neuronal cell types. Regulons of the complex contained Parkinson's disease-associated genes and were enriched for biological pathways genetically linked to disease. When examined in a neuroblastoma cell line, 41% of prioritised gene targets showed significant changes in mRNA expression following KANSL1 or KAT8 perturbation. KANSL1 and H4K8 chromatin immunoprecipitation-sequencing data demonstrated NSL complex activity at many of these genes. In conclusion, genes encoding the non-specific lethal complex are highly correlated with and regulate genes associated with Parkinson's disease. Overall, these findings reveal a potentially wider role for this protein complex in regulating genes and pathways implicated in Parkinson's disease.

Type: Article
Title: The non-specific lethal complex regulates genes and pathways genetically linked to Parkinson’s disease
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/brain/awad246
Publisher version: https://doi.org/10.1093/brain/awad246
Language: English
Additional information: © The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Keywords: GWAS, NSL complex, Parkinson’s disease, gene co-expression networks
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Genetics and Genomic Medicine Dept
URI: https://discovery.ucl.ac.uk/id/eprint/10178832
Downloads since deposit
34Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item