UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics

Lorenzi, Roberta Maria; Geminiani, Alice; Zerlaut, Yann; De Grazia, Marialaura; Destexhe, Alain; Wheeler-Kingshott, Claudia AM Gandini; Palesi, Fulvia; ... D'Angelo, Egidio; + view all (2023) A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics. PLoS Computational Biology , 19 (9) , Article e1011434. 10.1371/journal.pcbi.1011434. Green open access

[thumbnail of Wheeler-Kingshott_journal.pcbi.1011434.pdf]
Preview
Text
Wheeler-Kingshott_journal.pcbi.1011434.pdf

Download (3MB) | Preview

Abstract

Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions.

Type: Article
Title: A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pcbi.1011434
Publisher version: https://doi.org/10.1371/journal.pcbi.1011434
Language: English
Additional information: © 2023 Lorenzi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neuroinflammation
URI: https://discovery.ucl.ac.uk/id/eprint/10177306
Downloads since deposit
16Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item