UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Calcareous nannofossils across the Eocene-Oligocene transition: Preservation signals and biostratigraphic remarks from ODP Site 1209 (NW Pacific, Shatsky Rise) and IODP Hole U1411B (NW Atlantic Ocean, Newfoundland Ridge)

Viganò, A; Westerhold, T; Bown, PR; Jones, TD; Agnini, C; (2023) Calcareous nannofossils across the Eocene-Oligocene transition: Preservation signals and biostratigraphic remarks from ODP Site 1209 (NW Pacific, Shatsky Rise) and IODP Hole U1411B (NW Atlantic Ocean, Newfoundland Ridge). Palaeogeography, Palaeoclimatology, Palaeoecology , 629 , Article 111778. 10.1016/j.palaeo.2023.111778. Green open access

[thumbnail of Bown_Calcareous nannofossils across the Eocene-Oligocene transition- Preservation signals and biostratigraphic remarks from ODP Site 1209_VoR.pdf]
Preview
Text
Bown_Calcareous nannofossils across the Eocene-Oligocene transition- Preservation signals and biostratigraphic remarks from ODP Site 1209_VoR.pdf - Published Version

Download (29MB) | Preview

Abstract

This work provides a detailed biostratigraphic correlation through the Eocene-Oligocene Transition (EOT), based on an integrated stratigraphic approach and the study of calcareous nannofossils, between two disparate sites, one in the NW Atlantic (IODP Hole U1411B) and one in the NW Pacific (ODP Site 1209). The precise site-to-site correlation provided by these data allows for a comparison of carbonate preservation across the EOT including identification of the main post-depositional processes that impact the calcareous nannofossil ooze at Site 1209. The main aim of this work is to understand the extent to which the bulk δ18O and δ13C records and their sources (mainly calcareous nannofossils) are altered by diagenesis. Our detailed SEM study highlights some differences before, during and after the EOT, suggesting local diagenetic dynamics. At Site 1209, a distinctive change, both in nannofossil assemblage composition and preservation state, is observed from the pre-EOT phase to the Late Eocene Event (LEE), with a shift in the dominant process from dissolution to recrystallisation. Surprisingly, despite the overall poor preservation, only the interval between 141 and 142.4 (adj. rmcd) was compromised in term of isotopic values and assemblage diversity and abundance. This interval, recorded in the upper Eocene, was characterized by severe dissolution, concomitant with deposition of secondary calcite on solution-resistant forms. Diagenetic processes have strongly biased the δ18O isotopic signal, resulting in a positive oxygen isotope anomaly through the upper Eocene that is difficult to reconcile with other published trends. For the remaining time intervals, diagenesis seems not to have altered the bulk δ18O profile, which closely resembles that of other sites across the world, and is particularly consistent with other data from the Pacific Ocean. In summary, the impact of diagenesis on nannofossil preservation even if clearly visible both in SEM and optical microscope observations does not always cause a pervasive alteration of the primary isotopic signal and can instead provide important clues on local depositional dynamics.

Type: Article
Title: Calcareous nannofossils across the Eocene-Oligocene transition: Preservation signals and biostratigraphic remarks from ODP Site 1209 (NW Pacific, Shatsky Rise) and IODP Hole U1411B (NW Atlantic Ocean, Newfoundland Ridge)
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.palaeo.2023.111778
Publisher version: https://doi.org/10.1016/j.palaeo.2023.111778
Language: English
Additional information: © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
Keywords: Calcareous nannofossils, EOT, Preservation, Biostratigraphy, IODP Hole U1411BODP Site 1209
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10177214
Downloads since deposit
32Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item