Nanda, V;
Majumdar, A;
Kolling, C;
Dickerson, JP;
Gummadi, KP;
Love, BC;
Weller, A;
(2023)
Do Invariances in Deep Neural Networks Align with Human Perception?
In:
Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023.
(pp. pp. 9277-9285).
AAAI: Washington DC, USA.
Preview |
Text
2111.14726.pdf - Accepted Version Download (2MB) | Preview |
Abstract
An evaluation criterion for safe and trustworthy deep learning is how well the invariances captured by representations of deep neural networks (DNNs) are shared with humans. We identify challenges in measuring these invariances. Prior works used gradient-based methods to generate identically represented inputs (IRIs), i.e., inputs which have identical representations (on a given layer) of a neural network, and thus capture invariances of a given network. One necessary criterion for a network's invariances to align with human perception is for its IRIs look “similar” to humans. Prior works, however, have mixed takeaways; some argue that later layers of DNNs do not learn human-like invariances yet others seem to indicate otherwise. We argue that the loss function used to generate IRIs can heavily affect takeaways about invariances of the network and is the primary reason for these conflicting findings. We propose an adversarial regularizer on the IRI-generation loss that finds IRIs that make any model appear to have very little shared invariance with humans. Based on this evidence, we argue that there is scope for improving models to have human-like invariances, and further, to have meaningful comparisons between models one should use IRIs generated using the regularizer-free loss. We then conduct an in-depth investigation of how different components (e.g. architectures, training losses, data augmentations) of the deep learning pipeline contribute to learning models that have good alignment with humans. We find that architectures with residual connections trained using a (self-supervised) contrastive loss with `p ball adversarial data augmentation tend to learn invariances that are most aligned with humans. Code: github.com/nvedant07/Human-NN-Alignment. We strongly recommend reading the arxiv version of this paper: https://arxiv.org/abs/2111.14726.
Type: | Proceedings paper |
---|---|
Title: | Do Invariances in Deep Neural Networks Align with Human Perception? |
Event: | 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
Location: | Washington, D.C., USA |
Dates: | 7 Feb 2023 - 14 Feb 2023 |
ISBN-13: | 9781577358800 |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | https://ojs.aaai.org/index.php/AAAI/issue/archive |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Experimental Psychology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10176094 |
Archive Staff Only
View Item |