Zhang, J;
Barbarisi, S;
Kadkhodamohammadi, A;
Stoyanov, D;
Luengo, I;
(2024)
Self-knowledge distillation for surgical phase recognition.
International Journal of Computer Assisted Radiology and Surgery
, 19
pp. 61-68.
10.1007/s11548-023-02970-7.
Preview |
Text
Self-knowledge distillation for surgical phase recognition.pdf - Accepted Version Download (579kB) | Preview |
Abstract
Purpose: Advances in surgical phase recognition are generally led by training deeper networks. Rather than going further with a more complex solution, we believe that current models can be exploited better. We propose a self-knowledge distillation framework that can be integrated into current state-of-the-art (SOTA) models without requiring any extra complexity to the models or annotations. Methods: Knowledge distillation is a framework for network regularization where knowledge is distilled from a teacher network to a student network. In self-knowledge distillation, the student model becomes the teacher such that the network learns from itself. Most phase recognition models follow an encoder-decoder framework. Our framework utilizes self-knowledge distillation in both stages. The teacher model guides the training process of the student model to extract enhanced feature representations from the encoder and build a more robust temporal decoder to tackle the over-segmentation problem. Results: We validate our proposed framework on the public dataset Cholec80. Our framework is embedded on top of four popular SOTA approaches and consistently improves their performance. Specifically, our best GRU model boosts performance by + 3.33% accuracy and + 3.95% F1-score over the same baseline model. Conclusion: We embed a self-knowledge distillation framework for the first time in the surgical phase recognition training pipeline. Experimental results demonstrate that our simple yet powerful framework can improve performance of existing phase recognition models. Moreover, our extensive experiments show that even with 75% of the training set we still achieve performance on par with the same baseline model trained on the full set.
Type: | Article |
---|---|
Title: | Self-knowledge distillation for surgical phase recognition |
Location: | Germany |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1007/s11548-023-02970-7 |
Publisher version: | https://doi.org/10.1007/s11548-023-02970-7 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Surgical phase recognition, Knowledge distillation, Self-supervised learning, Surgical data science |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10175473 |
Archive Staff Only
View Item |