Martínez Carrasco, Alejandro;
Real, Raquel;
Lawton, Michael;
Hertfelder Reynolds, Regina;
Tan, Manuela;
Wu, Lesley;
Williams, Nigel;
... Morris, Huw R; + view all
(2023)
Genome-wide Analysis of Motor Progression in Parkinson Disease.
Neurology Genetics
, 9
(5)
, Article e200092. 10.1212/NXG.0000000000200092.
Preview |
Text
Real_Genome-wide Analysis of Motor Progression in Parkinson Disease_VoR.pdf - Published Version Download (548kB) | Preview |
Abstract
BACKGROUND AND OBJECTIVES: The genetic basis of Parkinson disease (PD) motor progression is largely unknown. Previous studies of the genetics of PD progression have included small cohorts and shown a limited overlap with genetic PD risk factors from case-control studies. Here, we have studied genomic variation associated with PD motor severity and early-stage progression in large longitudinal cohorts to help to define the biology of PD progression and potential new drug targets. METHODS: We performed a GWAS meta-analysis of early PD motor severity and progression up to 3 years from study entry. We used linear mixed-effect models with additive effects, corrected for age at diagnosis, sex, and the first 5 genetic principal components to assess variability in axial, limb, and total Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III scores. RESULTS: We included 3,572 unrelated European ancestry patients with PD from 5 observational cohorts and 1 drug trial. The average AAO was 62.6 years (SD = 9.83), and 63% of participants were male. We found an average increase in the total MDS-UPDRS III score of 2.3 points/year. We identified an association between PD axial motor progression and variation at the GJA5 locus at 1q12 (β = -0.25, SE = 0.04, p = 3.4e-10). Exploration of the regulation of gene expression in the region (cis-expression quantitative trait loci [eQTL] analysis) showed that the lead variant was associated with expression of ACP6, a lysophosphatidic acid phosphatase that regulates mitochondrial lipid biosynthesis (cis-eQTL p-values in blood and brain RNA expression data sets: <10-14 in eQTLGen and 10-7 in PsychEncode). DISCUSSION: Our study highlights the potential role of mitochondrial lipid homeostasis in the progression of PD, which may be important in establishing new drug targets that might modify disease progression.



1. | ![]() | 4 |
2. | ![]() | 3 |
3. | ![]() | 2 |
4. | ![]() | 2 |
5. | ![]() | 2 |
6. | ![]() | 1 |
7. | ![]() | 1 |
8. | ![]() | 1 |
9. | ![]() | 1 |
Archive Staff Only
![]() |
View Item |