Benoit, Eleanor;
Lyons, Declan G;
Rihel, Jason;
(2023)
Noradrenergic tone is not required for neuronal activity-induced rebound sleep in zebrafish.
Journal of Comparative Physiology B
10.1007/s00360-023-01504-6.
(In press).
Preview |
Text
s00360-023-01504-6.pdf - Published Version Download (2MB) | Preview |
Abstract
Sleep pressure builds during wakefulness, but the mechanisms underlying this homeostatic process are poorly understood. One zebrafish model suggests that sleep pressure increases as a function of global neuronal activity, such as during sleep deprivation or acute exposure to drugs that induce widespread brain activation. Given that the arousal-promoting noradrenergic system is important for maintaining heightened neuronal activity during wakefulness, we hypothesised that genetic and pharmacological reduction of noradrenergic tone during drug-induced neuronal activation would dampen subsequent rebound sleep in zebrafish larvae. During stimulant drug treatment, dampening noradrenergic tone with the α2-adrenoceptor agonist clonidine unexpectedly enhanced subsequent rebound sleep, whereas enhancing noradrenergic signalling with a cocktail of α1- and β-adrenoceptor agonists did not enhance rebound sleep. Similarly, CRISPR/Cas9-mediated elimination of the dopamine β-hydroxylase (dbh) gene, which encodes an enzyme required for noradrenalin synthesis, enhanced baseline sleep in larvae but did not prevent additional rebound sleep following acute induction of neuronal activity. Across all drug conditions, c-fos expression immediately after drug exposure correlated strongly with the amount of induced rebound sleep, but was inversely related to the strength of noradrenergic modulatory tone. These results are consistent with a model in which increases in neuronal activity, as reflected by brain-wide levels of c-fos induction, drive a sleep pressure signal that promotes rebound sleep independently of noradrenergic tone.
Type: | Article |
---|---|
Title: | Noradrenergic tone is not required for neuronal activity-induced rebound sleep in zebrafish |
Location: | Germany |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1007/s00360-023-01504-6 |
Publisher version: | https://doi.org/Journal of Comparative Physiology ... |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Noradrenalin, Sleep, Sleep homeostasis, Zebrafish, c-fos |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Cell and Developmental Biology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10174172 |
Archive Staff Only
View Item |