UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Data compression and computational efficiency

Bird, Thomas; (2023) Data compression and computational efficiency. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of phd_amended_v2.pdf]
Preview
Text
phd_amended_v2.pdf - Other

Download (15MB) | Preview

Abstract

In this thesis we seek to make advances towards the goal of effective learned compression. This entails using machine learning models as the core constituent of compression algorithms, rather than hand-crafted components. To that end, we first describe a new method for lossless compression. This method allows a class of existing machine learning models – latent variable models – to be turned into lossless compressors. Thus many future advancements in the field of latent variable modelling can be leveraged in the field of lossless compression. We demonstrate a proof-of-concept of this method on image compression. Further, we show that it can scale to very large models, and image compression problems which closely resemble the real-world use cases that we seek to tackle. The use of the above compression method relies on executing a latent variable model. Since these models can be large in size and slow to run, we consider how to mitigate these computational costs. We show that by implementing much of the models using binary precision parameters, rather than floating-point precision, we can still achieve reasonable modelling performance but requiring a fraction of the storage space and execution time. Lastly, we consider how learned compression can be applied to 3D scene data - a data medium increasing in prevalence, and which can require a significant amount of space. A recently developed class of machine learning models - scene representation functions - has demonstrated good results on modelling such 3D scene data. We show that by compressing these representation functions themselves we can achieve good scene reconstruction with a very small model size.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Data compression and computational efficiency
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2023. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10173999
Downloads since deposit
88Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item