Xu, L;
Chen, Y;
Srinivasan, S;
de Freitas, N;
Doucet, A;
Gretton, A;
(2021)
Learning Deep Features in Instrumental Variable Regression.
In:
Proceedings of the 9th International Conference on Learning Representations: ICLR 2021.
ICLR
Preview |
PDF
1670_learning_deep_features_in_inst.pdf - Published Version Download (816kB) | Preview |
Abstract
Instrumental variable (IV) regression is a standard strategy for learning causal relationships between confounded treatment and outcome variables from observational data by using an instrumental variable, which affects the outcome only through the treatment. In classical IV regression, learning proceeds in two stages: stage 1 performs linear regression from the instrument to the treatment; and stage 2 performs linear regression from the treatment to the outcome, conditioned on the instrument. We propose a novel method, deep feature instrumental variable regression (DFIV), to address the case where relations between instruments, treatments, and outcomes may be nonlinear. In this case, deep neural nets are trained to define informative nonlinear features on the instruments and treatments. We propose an alternating training regime for these features to ensure good end-to-end performance when composing stages 1 and 2, thus obtaining highly flexible feature maps in a computationally efficient manner. DFIV outperforms recent state-of-the-art methods on challenging IV benchmarks, including settings involving high dimensional image data. DFIV also exhibits competitive performance in off-policy policy evaluation for reinforcement learning, which can be understood as an IV regression task.
Type: | Proceedings paper |
---|---|
Title: | Learning Deep Features in Instrumental Variable Regression |
Event: | ICLR 2021 - 9th International Conference on Learning Representations |
Dates: | 3 May 2021 - 7 May 2021 |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | https://openreview.net/forum?id=sy4Kg_ZQmS7 |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neurosci Unit |
URI: | https://discovery.ucl.ac.uk/id/eprint/10167376 |
Archive Staff Only
View Item |