Zane, Silvia;
Taverna, R;
Gonzalez, D;
Muleri, F;
Turolla, R;
Wu, K;
(2023)
A strong X-ray polarization signal from the magnetar 1RXS J170849.0-400910.
Letters of the Astrophysical Journal
, 944
(2)
, Article L27. 10.3847/2041-8213/acb703.
Preview |
Text
Zane_2023_ApJL_944_L27.pdf Download (1MB) | Preview |
Abstract
Magnetars are the most strongly magnetized neutron stars, and one of the most promising targets for X-ray polarimetric measurements. We present here the first Imaging X-ray Polarimetry Explorer observation of the magnetar 1RXS J170849.0-400910, jointly analyzed with a new Swift observation and archival NICER data. The total (energy- and phase-integrated) emission in the 2–8 keV energy range is linerarly polarized, at a ∼35% level. The phase-averaged polarization signal shows a marked increase with energy, ranging from ∼20% at 2–3 keV up to ∼80% at 6–8 keV, while the polarization angle remains constant. This indicates that radiation is mostly polarized in a single direction. The spectrum is well reproduced by a combination of either two thermal (blackbody) components or a blackbody and a power law. Both the polarization degree and angle also show a variation with the spin phase, and the former is almost anticorrelated with the source counts in the 2–8 and 2–4 keV bands. We discuss the possible implications and interpretations, based on a joint analysis of the spectral, polarization, and pulsation properties of the source. A scenario in which the surface temperature is not homogeneous, with a hotter cap covered by a gaseous atmosphere and a warmer region in a condensed state, provides a satisfactory description of both the phase- and energy-dependent spectro-polarimetric data. The (comparatively) small size of the two emitting regions, required to explain the observed pulsations, does not allow to reach a robust conclusion about the presence of vacuum birefringence effects.
Type: | Article |
---|---|
Title: | A strong X-ray polarization signal from the magnetar 1RXS J170849.0-400910 |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3847/2041-8213/acb703 |
Publisher version: | https://doi.org/10.3847/2041-8213/acb703 |
Language: | English |
Additional information: | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics |
URI: | https://discovery.ucl.ac.uk/id/eprint/10164009 |



1. | ![]() | 3 |
2. | ![]() | 2 |
3. | ![]() | 2 |
4. | ![]() | 1 |
5. | ![]() | 1 |
Archive Staff Only
![]() |
View Item |