UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

All-optical interrogation of neural circuits in behaving mice

Russell, Lloyd E; Dalgleish, Henry WP; Nutbrown, Rebecca; Gauld, Oliver M; Herrmann, Dustin; Fişek, Mehmet; Packer, Adam M; (2022) All-optical interrogation of neural circuits in behaving mice. Nature Protocols , 17 (7) pp. 1579-1620. 10.1038/s41596-022-00691-w. Green open access

[thumbnail of Russell et al 2022 Nature Protocols.pdf]
Preview
Text
Russell et al 2022 Nature Protocols.pdf - Accepted Version

Download (66MB) | Preview

Abstract

Recent advances combining two-photon calcium imaging and two-photon optogenetics with computer-generated holography now allow us to read and write the activity of large populations of neurons in vivo at cellular resolution and with high temporal resolution. Such 'all-optical' techniques enable experimenters to probe the effects of functionally defined neurons on neural circuit function and behavioral output with new levels of precision. This greatly increases flexibility, resolution, targeting specificity and throughput compared with alternative approaches based on electrophysiology and/or one-photon optogenetics and can interrogate larger and more densely labeled populations of neurons than current voltage imaging-based implementations. This protocol describes the experimental workflow for all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system (~3 h), the preparation of an indicator and opsin-expressing and task-performing animal (~3-6 weeks), the characterization of functional and photostimulation responses (~2 h per field of view) and the design and implementation of an all-optical experiment (achievable within the timescale of a normal behavioral experiment; ~3-5 h per field of view). We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy in three brain areas by using different experimental setups. This approach can in principle be adapted to any brain area to probe functional connectivity in neural circuits and investigate the relationship between neural circuit activity and behavior.

Type: Article
Title: All-optical interrogation of neural circuits in behaving mice
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41596-022-00691-w
Publisher version: https://doi.org/10.1038/s41596-022-00691-w
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > The Sainsbury Wellcome Centre
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Wolfson Inst for Biomedical Research
URI: https://discovery.ucl.ac.uk/id/eprint/10160910
Downloads since deposit
350Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item