Lin, Rong;
He, Jiansen;
Zhu, Xingyu;
Zhang, Lei;
Duan, Die;
Sahraoui, Fouad;
Verscharen, Daniel;
(2022)
Power Anisotropy, Dispersion Signature and Turbulence Diffusion Region in the 3D Wavenumber Domain of Space Plasma Turbulence.
The Astrophysical Journal
, 939
(2)
, Article 121. 10.3847/1538-4357/ac8e07.
Preview |
Text
Lin_2022_ApJ_939_121.pdf - Published Version Download (1MB) | Preview |
Abstract
We explore the multifaceted important features of turbulence (e.g., anisotropy, dispersion, and diffusion) in the three-dimensional (3D) wavenumber domain (k ∥, k ⊥,1, k ⊥,2), by employing the k-filtering technique to high-quality measurements of fields and particles from the Magnetospheric Multiscale Mission (MMS) multi-spacecraft constellation. We compute the 3D power spectral densities (PSDs) of magnetic and electric field fluctuations (marked as PSD(δ B ( k )) and <?CDATA $\mathrm{PSD}(\delta {{\boldsymbol{E}}}_{\langle {{\boldsymbol{v}}}_{{\rm{i}}}\rangle }^{{\prime} }({\boldsymbol{k}}))$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>PSD</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>δ</mml:mi> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="bold-italic">E</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy="false">〈</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant="bold-italic">v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">i</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">〉</mml:mo> </mml:mrow> <mml:mrow> <mml:mo accent="true">′</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="bold-italic">k</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:math> , respectively), both of which show a prominent spectral anisotropy in the sub-ion range. We give the first 3D image of the bifurcation between the power spectra of the electric and magnetic fluctuations, by calculating the ratio between <?CDATA $\mathrm{PSD}(\delta {{\boldsymbol{E}}}_{\langle {{\boldsymbol{v}}}_{{\rm{i}}}\rangle }^{{\prime} }({\boldsymbol{k}}))$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>PSD</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>δ</mml:mi> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="bold-italic">E</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy="false">〈</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant="bold-italic">v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">i</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">〉</mml:mo> </mml:mrow> <mml:mrow> <mml:mo accent="true">′</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="bold-italic">k</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:math> and PSD(δ B ( k )), the distribution of which is related to the nonlinear dispersion relation. We also compute the ratio between electric spectra in different reference frames defined by the ion bulk velocity, <?CDATA $\mathrm{PSD}(\delta {{\boldsymbol{E}}}_{\mathrm{local}\ {{\boldsymbol{v}}}_{{\rm{i}}}}^{{\prime} })/\mathrm{PSD}(\delta {{\boldsymbol{E}}}_{\langle {{\boldsymbol{v}}}_{{\rm{i}}}\rangle }^{{\prime} })$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>PSD</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>δ</mml:mi> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="bold-italic">E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>local</mml:mi> <mml:mspace width="0.33em" /> <mml:msub> <mml:mrow> <mml:mi mathvariant="bold-italic">v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">i</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow> <mml:mo accent="true">′</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi>PSD</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>δ</mml:mi> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="bold-italic">E</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy="false">〈</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant="bold-italic">v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">i</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">〉</mml:mo> </mml:mrow> <mml:mrow> <mml:mo accent="true">′</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> </mml:math> , to visualize the turbulent ion diffusion region (T-IDR) in wavenumber space. The T-IDR has an anisotropy and a preferential direction of wavevectors, which is generally consistent with the plasma wave theory prediction based on the dominance of kinetic Alfvén waves. This work demonstrates the worth of the k-filtering technique in diagnosing turbulence comprehensively, especially when the electric field is involved.
Type: | Article |
---|---|
Title: | Power Anisotropy, Dispersion Signature and Turbulence Diffusion Region in the 3D Wavenumber Domain of Space Plasma Turbulence |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3847/1538-4357/ac8e07 |
Publisher version: | https://doi.org/10.3847/1538-4357/ac8e07 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third-party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics |
URI: | https://discovery.ucl.ac.uk/id/eprint/10159801 |
Archive Staff Only
View Item |