UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task: A Behavioural and Transcranial Alternating Current Stimulation Study

Schoenfeld, Marleen J; Grigoras, Ioana-Florentina; Stagg, Charlotte J; Zich, Catharina; (2021) Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task: A Behavioural and Transcranial Alternating Current Stimulation Study. Frontiers in Human Neuroscience , 15 , Article 755748. 10.3389/fnhum.2021.755748. Green open access

[thumbnail of Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task A Behavioural and Transcranial Alter.pdf]
Preview
Text
Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task A Behavioural and Transcranial Alter.pdf - Published Version

Download (2MB) | Preview

Abstract

Many tasks require the skilled interaction of both hands, such as eating with knife and fork or keyboard typing. However, our understanding of the behavioural and neurophysiological mechanisms underpinning bimanual motor learning is still sparse. Here, we aimed to address this by first characterising learning-related changes of different levels of bimanual interaction and second investigating how beta tACS modulates these learning-related changes. To explore early bimanual motor learning, we designed a novel bimanual motor learning task. In the task, a force grip device held in each hand (controlling x- and y-axis separately) was used to move a cursor along a path of streets at different angles (0°, 22.5°, 45°, 67.5°, and 90°). Each street corresponded to specific force ratios between hands, which resulted in different levels of hand interaction, i.e., unimanual (Uni, i.e., 0°, 90°), bimanual with equal force (Bieq, 45°), and bimanual with unequal force (Biuneq 22.5°, 67.5°). In experiment 1, 40 healthy participants performed the task for 45 min with a minimum of 100 trials. We found that the novel task induced improvements in movement time and error, with no trade-off between movement time and error, and with distinct patterns for the three levels of bimanual interaction. In experiment 2, we performed a between-subjects, double-blind study in 54 healthy participants to explore the effect of phase synchrony between both sensorimotor cortices using tACS at the individual’s beta peak frequency. The individual’s beta peak frequency was quantified using electroencephalography. 20 min of 2 mA peak-to-peak amplitude tACS was applied during task performance (40 min). Participants either received in-phase (0° phase shift), out-of-phase (90° phase shift), or sham (3 s of stimulation) tACS. We replicated the behavioural results of experiment 1, however, beta tACS did not modulate motor learning. Overall, the novel bimanual motor task allows to characterise bimanual motor learning with different levels of bimanual interaction. This should pave the way for future neuroimaging studies to further investigate the underlying mechanism of bimanual motor learning.

Type: Article
Title: Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task: A Behavioural and Transcranial Alternating Current Stimulation Study
Location: Switzerland
Open access status: An open access version is available from UCL Discovery
DOI: 10.3389/fnhum.2021.755748
Publisher version: https://doi.org/10.3389/fnhum.2021.755748
Language: English
Additional information: Copyright © 2021 Schoenfeld, Grigoras, Stagg and Zich. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (http://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Keywords: unimanual motor learning, bimanual motor learning, transcranial alternating current stimulation, bihemispheric stimulation, phase synchrony, beta activity
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
URI: https://discovery.ucl.ac.uk/id/eprint/10158614
Downloads since deposit
20Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item